[1] 杜祥琬. 能源生产和消费革命战略[N]. 中国财经报, 2017-06-03(002). [2] 杜祥琬. 能源科技发展前沿及未来方向[J]. 科学通报, 2017, 62(8): 780-784 DU Xiangwan. Frontiers and future directions of energy science and technology[J]. Chinese Science Bulletin, 2017, 62(8): 780-784 [3] 钟迪, 李启明, 周贤, 等. 多能互补能源综合利用关键技术研究现状及发展趋势[J]. 热力发电, 2018, 47(2): 1-5, 55 ZHONG Di, LI Qiming, ZHOU Xian, et al. Research status and development trends for key technologies of multi-energy complementary comprehensive utilization system[J]. Thermal Power Generation, 2018, 47(2): 1-5, 55 [4] 艾芊, 郝然. 多能互补、集成优化能源系统关键技术及挑战[J]. 电力系统自动化, 2018, 42(4): 1-10, 46 AI Qian, HAO Ran. Key technologies and challenges for multi-energy complementarity and optimization of integrated energy system[J]. Automation of Electric Power Systems, 2018, 42(4): 1-10, 46 [5] 黄子硕, 何桂雄, 闫华光, 等. 园区级综合能源系统优化模型功能综述及展望[J]. 电力自动化设备, 2020, 40(1): 10-18 HUANG Zishuo, HE Guixiong, YAN Huaguang, et al. Overview and prospect of optimization model function for community-scale integrated energy system[J]. Electric Power Automation Equipment, 2020, 40(1): 10-18 [6] BRANDONI C, RENZI M. Optimal sizing of hybrid solar micro-CHP systems for the household sector[J]. Applied Thermal Engineering, 2015, 75: 896-907. [7] CHALKIADAKIS G, ROBU V, KOTA R, et al. Cooperatives of distributed energy resources for efficient virtual power plants[C]//The 10th International Conference on Autonomous Agents and Multiagent Systems - Volume 2. Taipei, Taiwan: International Foundation for Autonomous Agents and Multiagent Systems; 2011. [8] CEDILLOS ALVARADO D, ACHA S, SHAH N, et al. a Technology Selection and Operation (TSO) optimisation model for distributed energy systems: Mathematical formulation and case study[J]. Applied Energy, 2016, 180: 491-503. [9] 黄子硕, 于航, 彭震伟. 广域网视角下的城市能量系统及其规划[J]. 科学通报, 2018, 63(28): 3047-3058 HUANG Zishuo, YU Hang, PENG Zhenwei. Urban energy system planning from wide area network perspective[J]. Chinese Science Bulletin, 2018, 63(28): 3047-3058 [10] CHEN X Y, KANG C Q, O'MALLEY M, et al. Increasing the flexibility of combined heat and power for wind power integration in China: modeling and implications[J]. IEEE Transactions on Power Systems, 2015, 30(4): 1848-1857. [11] RUAN Y J, LIU Q R, LI Z W, et al. Optimization and analysis of building combined cooling, heating and power (BCHP) plants with chilled ice thermal storage system[J]. Applied Energy, 2016, 179: 738-754. [12] GUO L, LIU W J, CAI J J, et al. A two-stage optimal planning and design method for combined cooling, heat and power microgrid system[J]. Energy Conversion and Management, 2013, 74: 433-445. [13] UDDIN M, ROMLIE M F, ABDULLAH M F, et al. A review on peak load shaving strategies[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3323-3332. [14] 崔鹏程, 史俊祎, 文福拴, 等. 计及综合需求侧响应的能量枢纽优化配置[J]. 电力自动化设备, 2017, 37(6): 101-109 CUI Pengcheng, SHI Junyi, WEN Fushuan, et al. Optimal energy hub configuration considering integrated demand response[J]. Electric Power Automation Equipment, 2017, 37(6): 101-109 [15] 张堙, 魏志远, 王馨, 等. 负荷特性对蓄能型建筑热电联供系统节能率的影响[J]. 工程热物理学报, 2019, 40(3): 656-660 ZHANG Yin, WEI ZhiYuan, WANG Xin, et al. Influence of load characteristics on energy saving ratio for TES-BCHP system[J]. Journal of Engineering Thermophysics, 2019, 40(3): 656-660 [16] LOCATELLI G, PALERMA E, MANCINI M. Assessing the economics of large energy storage plants with an optimisation methodology[J]. Energy, 2015, 83: 15-28. [17] 白牧可, 唐巍, 吴聪, 等. 基于热网-电网综合潮流的用户侧微型能源站及接入网络优化规划[J]. 电力自动化设备, 2017, 37(6): 84-93 BAI Muke, TANG Wei, WU Cong, et al. Optimal planning based on integrated thermal-electric power flow for user-side micro energy station and its integrating network[J]. Electric Power Automation Equipment, 2017, 37(6): 84-93 [18] ASGHARIAN H, BANIASADI E. Experimental and numerical analyses of a cooling energy storage system using spherical capsules[J]. Applied Thermal Engineering, 2019, 149: 909-923. [19] PFEIFER A, DOBRAVEC V, PAVLINEK L, et al. Integration of renewable energy and demand response technologies in interconnected energy systems[J]. Energy, 2018, 161: 447-455. [20] 吴晨曦, 张杰, 张新延,等. 考虑电价影响的电动汽车削峰填谷水平评价[J]. 电力系统保护与控制, 2019, 47(17): 14-22 WU Chenxi, ZHANG Jie, ZHANG Xinyan,et al. Load shifting level evaluation of EVs in the different energy price environment[[J]. Power System Protection and Control, 2019, 47(17): 14-22 [21] SIANO P. Demand response and smart grids: a survey[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 461-478. [22] 王均, 黄琦. 基于优惠券激励的需求响应双层优化机制[J]. 电力系统保护与控制, 2019, 47(1): 108−114. WANG Jun, HUANG Qi. Coupon incentives based customers voluntary demand response
program via bilevel optimization mechanism[J]. Power System Protection and Control, 2019, 47(1): 108−114. [23] YUSTA J M, KHODR H M, URDANETA A J. Optimal pricing of default customers in electrical distribution systems: Effect behavior performance of demand response models[J]. Electric Power Systems Research, 2007, 77(5/6): 548-558. [24] SCHWEPPE F C, CARAMANIS M C, TABORS R D. Evaluation of spot price based electricity rates[J]. IEEE Transactions on Power Apparatus and Systems, 1985, PAS-104(7): 1644-1655. [25] YOUSEFI S, MOGHADDAM M P, MAJD V J. Optimal real time pricing in an agent-based retail market using a comprehensive demand response model[J]. Energy, 2011, 36(9): 5716-5727.
|