[1] LIU Z, GUAN D B, WEI W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565):335-338. [2] FLOUDAS C A, NIZIOLEK A M, ONEL O, et al. Multi-scale systems engineering for energy and the environment:challenges and opportunities[J]. Aiche Journal, 2016, 62(3):602-623. [3] FENG L, MEARS L, BEAUFORT C, et al. Energy, economy, and environment analysis and optimization on manufacturing plant energy supply system[J]. Energy Conversion & Management, 2016, 117:454-465. [4] BRANDT A R, HEATH G A, KORT E A, et al. Methane leaks from North American natural gas systems[J]. Science, 2014, 343(6172):733-735. [5] 徐玉杰, 陈海生, 刘佳, 等. 风光互补的压缩空气储能与发电一体化系统特性分析[J]. 中国电机工程学报, 2012, 32(20):88-95, 144 XU Yujie, CHEN Haisheng, LIU Jia, et al. Performance analysis on an integrated system of compressed air energy storage and electricity production with wind-solar complementary method[J]. Proceedings of the CSEE, 2012, 32(20):88-95, 144 [6] OTSUKI T. Costs and benefits of large-scale deployment of wind turbines and solar PV in Mongolia for international power exports[J]. Renewable Energy, 2017, 108:321-335. [7] FAN X C, WANG W Q, SHI R J, et al. Analysis and countermeasures of wind power curtailment in China[J]. Renewable & Sustainable Energy Reviews, 2015, 52:1429-1436. [8] FERREIRA H L, GARDE R, FULLI G, et al. Characterisation of electrical energy storage technologies[J]. Energy, 2013, 53(5):288-298. [9] 李玉平, 徐玉杰, 李斌, 等. 跨临界二氧化碳储能系统研究[J]. 中国电机工程学报, 2018, 38(21):6367-6374, 6499 LI Yuping, XU Yujie, LI Bin, et al. Research on transcritical carbon dioxide energy storage system[J]. Proceedings of the CSEE, 2018, 38(21):6367-6374, 6499 [10] CHEN H, CONG T N, YANG W, et al. Progress in electrical energy storage system:a critical review[J]. Progress in Natural Science Materials International, 2009, 19(3):291-312. [11] LUO X, WANG J, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy, 2015, 137:511-536. [12] SCIACOVELLI A, VECCHI A, DING Y. Liquid air energy storage (LAES) with packed bed cold thermal storage-from component to system level performance through dynamic modelling[J]. Applied Energy, 2017, 190:84-98. [13] GUIZZI G L, MANNO M, TOLOMEI L M, et al. Thermodynamic analysis of a liquid air energy storage system[J]. Energy, 2015, 93:1639-1647. [14] 刘佳, 夏红德, 陈海生, 等. 新型液化空气储能技术及其在风电领域的应用[J]. 工程热物理学报, 2010, 31(12):1993-1996 LIU Jia, XIA Hongde, CHEN Haisheng, et al. A novel energy storage technology based on liquid air and ITS application in wind power[J]. Journal of Engineering Thermophysics, 2010, 31(12):1993-1996 [15] XIE Yingbai, XUE Xiaodong. Thermodynamic analysis on an integrated liquefied air energy storage and electricity generation system[J]. Energies, 2018, 11(10):2540. [16] SHE X, PENG X, NIE B, et al. Enhancement of round trip efficiency of liquid air energy storage through[J]. Applied Energy, 2017, 206:1632-1642. [17] MORGAN R, NELMES S, GIBSON E, et al. Liquid air energy storage-analysis and first results from a pilot scale demonstration plant[J]. Applied Energy, 2015, 137:845-853. [18] 安保林, 王俊杰, 段远源. 联合液化空气储能的有机朗肯循环研究[J]. 工程热物理学报, 2018, 39(3):471-475 AN Baolin, WANG Junjie, DUAN Yuanyuan. Research on the combing of organic Rankine cycle and liquid air energy storage system[J]. Journal of Engineering Thermophysics, 2018, 39(3):471-475 [19] ROCCO M V, COLOMBO E, SCIUBBA E. Advances in exergy analysis:a novel assessment of the extended exergy accounting method[J]. Applied Energy, 2014, 113:1405-1420. [20] BISWAS S, MANDAL K K, CHAKRABORTY N. Pareto-efficient double auction power transactions for economic reactive power dispatch[J]. Applied Energy, 2016, 168:610-627. [21] PELZ P F, HOLL M, PLATZER M. Analytical method towards an optimal energetic and economical wind-energy converter[J]. Energy, 2016, 94:344-351. [22] LI Y, LIAO S, LIU G. Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-Ⅱ and decision making[J]. International Journal of Electrical Power & Energy Systems, 2015, 64:167-175. [23] AHMADI M H, SAYYAADI H, MOHAMMADI A H, et al. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm[J]. Energy Conversion & Management, 2013, 73(5):370-380. [24] YUE Z. A method for group decision-making based on determining weights of decision makers using TOPSIS[J]. Applied Mathematical Modelling, 2011, 35(4):1926-1936. [25] 元博, 张运洲, 鲁刚, 等. 电力系统中储能发展前景及应用关键问题研究[J]. 中国电力, 2019, 52(3):1-8 YUAN Bo, ZHANG Yunzhou, LU Gang, et al. Research on key issues of energy storage development and application in power systems[J]. Electric Power, 2019, 52(3):1-8
|