中国电力 ›› 2020, Vol. 53 ›› Issue (11): 126-132.DOI: 10.11930/j.issn.1004-9649.201907086

• 电网 • 上一篇    下一篇

图像识别在特高压换流阀元件故障在线监测系统的应用

蒋晶1,2, 赵洋洋1,2, 樊宏伟1,2, 周振宇3, 董朝阳1,2, 杨青波1,2, 王晓丽1,2   

  1. 1. 许继集团有限公司,河南 许昌 461000;
    2. 许继电气股份有限公司,河南 许昌 461000;
    3. 中国电力技术装备有限公司,北京 100052
  • 收稿日期:2019-07-09 修回日期:2020-03-22 出版日期:2020-11-05 发布日期:2020-11-05
  • 通讯作者: 国家电网公司科技项目(新型换流阀和阀厅防火灭火技术研究,5200-201946091A-0-0-00)
  • 作者简介:蒋晶(1985—),女,工程师,硕士,从事直流输电、新能源监控系统方面的技术研究,E-mail:jiangjing_mm@163.com;赵洋洋(1985—),男,工程师,硕士,从事柔性直流输电技术及大功率换流装置研究,E-mail:412032303@qq.com;董朝阳(1973—),男,高级工程师,从事特高压直流输电技术研究,E-mail:chaoyangd@163.com
  • 基金资助:
    This work is supported by Science and Technology Project of SGCC (Research on New Fire Prevention Technology of Converter Valve and Valve Hall Technology, No.5200-201946091A-0-0-00)

Application of Image Recognition in On-Line Monitoring System of UHVDC Valve Element Faults

JIANG Jing1,2, ZHAO Yangyang1,2, FAN Hongwei1,2, ZHOU Zhenyu3, DONG Chaoyang1,2, YANG Qingbo1,2, WANG Xiaoli1,2   

  1. 1. XJ Group Corporation, Xuchang 461000, China;
    2. XJ Electric Company Limited, Xuchang 461000, China;
    3. China Electric Power Equipment and Technology Co., Ltd., Beijing 100052, China
  • Received:2019-07-09 Revised:2020-03-22 Online:2020-11-05 Published:2020-11-05

摘要: 针对特高压换流阀元件众多、实时监测困难的问题,提出了一种基于图像识别技术的换流阀元件状态在线监测方法。介绍了图像数据提取及预处理的方法,分析了晶闸管门极线脱落及螺母力矩线偏移的图像特征,实现了晶闸管门极线脱落、螺母位移等故障的智能检测。基于图像识别及故障特征提取方法,设计了一套换流阀元件状态在线监测样机,详细介绍了样机的软件和硬件设计方法。在特高压直流输电阀塔上搭建试验环境,对图像分析和故障特征提取的方法进行测试,试验结果表明,所提出的图像分析和故障特征提取方法可有效识别换流阀元件的异常工况,对换流阀元件运行异常提前预警。

关键词: 换流阀, 图像识别技术, 在线监测, 智能检测, 预警

Abstract: UHVDC valve elements are numerous and hard to monitor in real time. An on-line monitoring method is thus proposed for converter valve element conditions based on image recognition technology. The paper introduces the method to extract and pre-process image data, and analyzes the image characteristics of thyristor gate wire shedding and nut torque line displacement. The image recognition technology is adopted to realize intelligent detection of faults such as thyristor gate wire shedding and nut displacement. A prototype is designed for on-line monitoring of converter valve element conditions based on the image recognition and fault feature extraction method, and its software and hardware design methods are introduced in detail. The testing environment is set up on a valve tower of UHVDC to test the image analysis and fault feature extraction method. The testing results show that the proposed method can effectively identify the abnormal working conditions of the valve elements, and realize the early warning of their abnormal operations, and can prevent the further expansion of faults.

Key words: converter valve, image recognition technology, on-line monitoring, intelligent detection, early-warning