[1] 田松, 鲁海亮, 文习山, 等. 安全性分析在变电站接地网设计中的应用[J]. 高压电器, 2014, 50(7): 44-50, 56 TIAN Song, LU Hailiang, WEN Xishan, et al. Security analysis in the design of the substation grounding grid[J]. High Voltage Apparatus, 2014, 50(7): 44-50, 56 [2] 郭名文, 樊艳芳, 耿山, 等. 特高压直流接地极周边断裂结构对地表电位分布的影响研究[J]. 电力系统保护与控制, 2019, 47(2): 73–79. GUO Mingwen, FAN Yanfang, GENG Shan, et al. Study on the effect of fracture structure adjacent to ground electrodes of UHVDC power transmission lines on earth surface potential distribution[J]. Power System Protection and Control, 2019, 47(2): 73–79. [3] 曹晓斌, 胡劲松, 余波, 等. 一类垂直双层土壤中地网接地电阻的简易计算公式[J]. 中国电机工程学报, 2009, 29(1): 120-126 CAO Xiaobin, HU Jinsong, YU Bo, et al. a simplified formula for grounding grids resistance in a type of vertical two-layer soil[J]. Proceedings of the CSEE, 2009, 29(1): 120-126 [4] 罗琛, 马力, 詹旻, 等. 季节性冻土对变电站接地安全参数的影响[J]. 中国电力, 2018, 51(6): 89-95 LUO Chen, MA Li, ZHAN Min, et al. Analysis of the influence of seasonal frozen soil on the grounding safety parameters of substation[J]. Electric Power, 2018, 51(6): 89-95 [5] 李瑞庆, 惠贵兴, 阮江军, 等. 变电站接地短路对附近电位分布影响的计算[J]. 高电压技术, 2005, 31(5): 67-68 LI Ruiqing, HUI Guixing, RUAN Jiangjun, et al. Calculation of electric potential distribution around the substation during grounding faults[J]. High Voltage Engineering, 2005, 31(5): 67-68 [6] 刘渝根, 陈超. 基于人工蜂群算法优化支持向量机的接地网腐蚀速率预测模型[J]. 电力自动化设备, 2019, 39(5): 182-186, 200 LIU Yugen, CHEN Chao. Corrosion rate prediction model of grounding grid based on support vector machine optimized by artificial bee colony algorithm[J]. Electric Power Automation Equipment, 2019, 39(5): 182-186, 200 [7] 王红坡, 吴涛, 刘利强. 新建500kV变电站的接地网设计[J]. 内蒙古工业大学学报(自然科学版), 2017, 36(1): 30-37 WANG Hongpo, WU Tao, LIU Liqiang. The design of the new 500 kV substation grounding grid[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2017, 36(1): 30-37 [8] 黄一凡, 周宏威, 卢延飞, 等. 高纬度寒区变电站接地网设计优化研究[J]. 电气应用, 2018, 37(14): 12-16 HUANG Yifan, ZHOU Hongwei, LU Yanfei, et al. Design optimization of substation grounding grid in high latitude cold region[J]. Electrotechnical Application, 2018, 37(14): 12-16 [9] 高延庆, 何金良, 曾嵘. 发、变电站接地网安全性能分析[J]. 中国电力, 2001, 34(5): 33-36 GAO Yanqing, HE Jinliang, ZENG Rong. Safety analysis of grounding grid for substations with different structure[J]. Electric Power, 2001, 34(5): 33-36 [10] DONG X Z, CHINA T U B, WANG D L, et al. Smart power substation development in China[J]. CSEE Journal of Power and Energy Systems, 2016, 2(4): 1-5. [11] 王平, 贾立莉, 李守学, 等. 110kV全户内智能变电站接地网优化设计[J]. 中国电力, 2018, 51(3): 42-48 WANG Ping, JIA Lili, LI Shouxue, et al. Optimal design of grounding grid for 110 kV whole-indoor intelligent substation[J]. Electric Power, 2018, 51(3): 42-48 [12] ZHANG B, JIANG Y K, WU J P, et al. Influence of potential difference within large grounding grid on fault current Division factor[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1752-1759. [13] 曹方圆, 时卫东, 康鹏, 等. 接地材料对杆塔接地装置冲击接地阻抗的影响[J]. 中国电力, 2016, 49(10): 67-73 CAO Fangyuan, SHI Weidong, KANG Peng, et al. Influence of ground material on the impulse ground impedance of tower's grounding devices[J]. Electric Power, 2016, 49(10): 67-73 [14] 杨剑, 潘文霞, 孙宏航. 考虑地表高阻层的直流接地极跨步电压限值计算方法[J]. 中国电力, 2017, 50(2): 150-156 YANG Jian, PAN Wenxia, SUN Honghang. Research on calculation method for step voltage limitation of DC grounding electrode based on surface high-resistance covering[J]. Electric Power, 2017, 50(2): 150-156 [15] LI Z, WANG S, GUO F, et al. Study on characteristics of grounding impedance of large grounding grid[C]//IEEE International Conference on Environment & Electrical Engineering & IEEE Industrial & Commercial Power Systems Europe. IEEE, 2017. [16] HE J L, ZHANG B, ZENG R. Maximum limit of allowable ground potential rise of substation grounding system[J]. IEEE Transactions on Industry Applications, 2015, 51(6): 5010-5016. [17] 鲁志伟, 常树生, 张久禄. 大型变电站接地网的网内电位差[J]. 电力建设, 2004, 25(9): 39-40 LU Zhiwei, CHANG Shusheng, ZHANG Jiulu. Potential difference within grounding net for large substations[J]. Electric Power Construction, 2004, 25(9): 39-40 [18] 鲁志伟, 文习山, 史艳玲, 等. 大型变电站接地网工频接地参数的数值计算[J]. 中国电机工程学报, 2003, 23(12): 89-93 LU Zhiwei, WEN Xishan, SHI Yanling, et al. Numerical calculation of large substation grounding grids in industry frequency[J]. Proceedings of the CSEE, 2003, 23(12): 89-93 [19] 端木林楠, 赵习静, 周小明, 等. 基于CDEGS的接地网分流系数仿真与实测分析[J]. 高压电器, 2016, 52(1): 154-161 DUANMU Linnan, ZHAO Xijing, ZHOU Xiaoming, et al. Analysis of the experiment and simulation based on CDEGS of the shunt current coefficient of the grounding grid[J]. High Voltage Apparatus, 2016, 52(1): 154-161 [20] 豆朋, 陆培钧, 屈勇, 等. 利用CDEGS软件比较分析铜和钢接地网的性能[J]. 高电压技术, 2007, 33(12): 217-219 DOU Peng, LU Peijun, QU Yong, et al. Comparative analysis the property of copper and copper grounding grid using CDEGS[J]. High Voltage Engineering, 2007, 33(12): 217-219
|