中国电力 ›› 2025, Vol. 58 ›› Issue (10): 225-234.DOI: 10.11930/j.issn.1004-9649.202505071

• 电力市场 • 上一篇    

考虑可再生能源配额的区域电力市场竞价行为推演

许喆(), 陈晓东(), 贾旭东, 陈紫颖   

  1. 广州电力交易中心有限责任公司,广东 广州 510180
  • 收稿日期:2025-05-27 发布日期:2025-10-23 出版日期:2025-10-28
  • 作者简介:
    许喆(1989),女,通信作者,硕士,高级工程师,从事电力市场研究,E-mail:xuzhe@csg.cn
    陈晓东(1975),男,博士,高级工程师,从事电力市场研究, E-mail:chenxd2@csg.cn
  • 基金资助:
    广州电力交易中心科技项目(180000KC23080001)。

Bidding Behavior Evolution in Regional Electricity Markets Considering Renewable Energy Quotas

XU Zhe(), CHEN Xiaodong(), JIA Xudong, CHEN Ziying   

  1. Guangzhou Power Exchange Co., Ltd., Guangzhou 510180, China
  • Received:2025-05-27 Online:2025-10-23 Published:2025-10-28
  • Supported by:
    This work is supported by Science and Technology Project of Guangzhou Power Exchange Center Co., Ltd. (No.180000KC23080001).

摘要:

随着可再生能源渗透率持续提升及可调机组容量增加,其参与电力市场竞价交易正在逐步成为重要趋势。为深入分析区域电力市场中新能源发电商(renewable energy generators,REG)与传统发电商(conventional power generators,CPG)之间的竞争博弈行为,提出了一种多领导者-单跟随者(multiple leaders-one follower,MLOF)纳什-斯塔克尔伯格(nash-stackelberg,NS)博弈模型。上层基于绿证交易机制构建了新能源与传统发电商联合参与电能量及辅助服务市场的投标报价策略模型,下层为电力-备用-平衡联合市场出清模型,确定市场出清结果及价格信号。在此基础上,基于高效分布式算法对复杂博弈模型进行求解,以提升计算效率并保护各方数据隐私。仿真分析表明,所提模型能够有效提升新能源发电商的市场收益,增强其在多主体竞争中的博弈能力。

关键词: 新能源发电商, 联合市场, 分布式求解

Abstract:

With the continuous increase of the renewable energy penetration and the increment of the adjustable units capacity, it has been an important trend for them to participate the electricity market auction transaction. In order to deeply analyze the competitive game behavior between renewable energy generators (REG) and conventional power generators (CPG) in the regional electricity market, multiple leaders-one follower (MLOF) Nash-Stackelberg (NS) game model is proposed. The upper layer constructs a bidding strategy model for the joint participation of renewable and conventional power generators in the electricity energy and ancillary service market based on the green certificate trading mechanism. The lower layer is a joint market clearing model of electricity-reserve-, which determines the market clearing results and price signals. On this basis, an efficient distributed algorithm is carried out to solve the complex game model. So as to improve the computational and protect the data privacy of all parties. Simulation analysis shows that the proposed model can effectively improve the market returns of renewable energy generators, and enhance their game ability in multi-subject.

Key words: new energy power generation, joint market, distributed solution


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?