中国电力 ›› 2023, Vol. 56 ›› Issue (11): 113-120.DOI: 10.11930/j.issn.1004-9649.202304099
李铁成1(), 范辉1(
), 臧谦1, 任江波2, 张卫明1, 王义波3(
)
收稿日期:
2023-04-26
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
李铁成(1980—),男,高级工程师(教授级),从事电力系统继电保护与控制,E-mail: 84106438@qq.com基金资助:
Tiecheng LI1(), Hui FAN1(
), Qian ZANG1, Jiangbo REN2, Weiming ZHANG1, Yibo WANG3(
)
Received:
2023-04-26
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
基于遥信数据的线性区段定位方法没有考虑通信时延和可靠性的影响,且仅适用于大电流故障和单重故障,对此,提出一种基于5G通信的有源配电网多点同步保护方案。首先,建立基于5G通信的区段定位通信架构,并分析其通信时延和可靠性;其次,在分析暂态零序电流方向分布特点的基础上,对开关函数重新进行定义,提出一种适用于小电流故障的逻辑关系定位模型;然后,采用左右逼近方法,将根据逻辑关系建立的开关函数线性化,最终使得线性化后的逻辑关系定位模型不仅适用于单重故障,而且适用于多重故障;最后,基于不同拓扑结构和5G通信的有源配电网算例对所提保护方案进行了验证,结果表明所提方案不仅能够实现多点同步保护,而且适用于小电流故障和多重故障。
中图分类号:
李铁成, 范辉, 臧谦, 任江波, 张卫明, 王义波. 基于5G通信的有源配电网多点同步保护方案[J]. 中国电力, 2023, 56(11): 113-120.
Tiecheng LI, Hui FAN, Qian ZANG, Jiangbo REN, Weiming ZHANG, Yibo WANG. Multi-point Synchronous Protection Scheme for Active Distribution Network Based on 5G Communication[J]. Electric Power, 2023, 56(11): 113-120.
通信过程 | 类型 | 通信过程 | 类型 | |||
0→1 | 误报 | 1→1 | 正常 | |||
1→0 | 漏报 | 0→0 | 正常 |
表 1 通信过程存在的4种情况
Table 1 Processes and types of false negatives and false positives
通信过程 | 类型 | 通信过程 | 类型 | |||
0→1 | 误报 | 1→1 | 正常 | |||
1→0 | 漏报 | 0→0 | 正常 |
节点 | 稳态零序 电流方向 | 节点稳态 状态编码 | 暂态零序 电流方向 | 节点暂态 状态编码 | ||||
S1 | – | 1 | – | 1 | ||||
S2 | – | 1 | – | 1 | ||||
S3 | – | 1 | – | 1 | ||||
S4 | + | 0 | + | 0 | ||||
S5 | + | 0 | + | 0 | ||||
S6 | – | 1 | – | 1 | ||||
S7 | + | 0 | + | 0 |
表 2 T型配电网各节点零序电流方向与状态编码
Table 2 Zero-sequence current direction and status code of each node of T-type distribution network
节点 | 稳态零序 电流方向 | 节点稳态 状态编码 | 暂态零序 电流方向 | 节点暂态 状态编码 | ||||
S1 | – | 1 | – | 1 | ||||
S2 | – | 1 | – | 1 | ||||
S3 | – | 1 | – | 1 | ||||
S4 | + | 0 | + | 0 | ||||
S5 | + | 0 | + | 0 | ||||
S6 | – | 1 | – | 1 | ||||
S7 | + | 0 | + | 0 |
模型 | 故障线路位置 | 漏误报节点位置 | 线路定位结果 | |||
本文 | 2 | 无漏误报 | 2 | |||
文献[ | 2 | 无漏误报 | 无法定位 | |||
文献[ | 2 | 无漏误报 | 无法定位 | |||
本文 | 5 | S2 | 5 | |||
文献[ | 5 | S2 | 无法定位 | |||
文献[ | 5 | S2 | 无法定位 | |||
本文 | 6 | S4 | 6 | |||
文献[ | 6 | S4 | 无法定位 | |||
文献[ | 6 | S4 | 无法定位 |
表 3 单相接地故障下的定位结果
Table 3 Location results under single-phase ground fault
模型 | 故障线路位置 | 漏误报节点位置 | 线路定位结果 | |||
本文 | 2 | 无漏误报 | 2 | |||
文献[ | 2 | 无漏误报 | 无法定位 | |||
文献[ | 2 | 无漏误报 | 无法定位 | |||
本文 | 5 | S2 | 5 | |||
文献[ | 5 | S2 | 无法定位 | |||
文献[ | 5 | S2 | 无法定位 | |||
本文 | 6 | S4 | 6 | |||
文献[ | 6 | S4 | 无法定位 | |||
文献[ | 6 | S4 | 无法定位 |
故障类型 | 故障线路位置 | 漏误报节点位置 | 线路定位结果 | |||
单相两重故障 | 10, 12 | 无漏误报 | 10, 12 | |||
15, 20 | 无漏误报 | 15, 20 | ||||
9, 28 | 无漏误报 | 9, 28 | ||||
11, 26 | 无漏误报 | 11, 26 | ||||
10, 12 | S3 | 10, 12 | ||||
15, 20 | S4 | 15, 20 | ||||
9, 28 | S8, S27 | 9, 28 | ||||
11, 26 | S4, S7 | 11, 26 | ||||
单相三重故障 | 10, 12, 27 | 无漏误报 | 10, 12, 27 | |||
15, 20, 22 | 无漏误报 | 15, 20, 22 | ||||
9, 25, 28 | 无漏误报 | 9, 25, 28 | ||||
11, 18, 26 | 无漏误报 | 11, 18, 26 | ||||
10, 12, 27 | S4 | 10, 12, 27 | ||||
15, 20, 22 | S3, S14 | 15, 20, 22 | ||||
9, 25, 28 | S6, S14 | 9, 25, 28 | ||||
11, 18, 26 | S3, S6, | 11, 18, 26 |
表 4 多重故障下的定位结果
Table 4 Location results under multiple faults
故障类型 | 故障线路位置 | 漏误报节点位置 | 线路定位结果 | |||
单相两重故障 | 10, 12 | 无漏误报 | 10, 12 | |||
15, 20 | 无漏误报 | 15, 20 | ||||
9, 28 | 无漏误报 | 9, 28 | ||||
11, 26 | 无漏误报 | 11, 26 | ||||
10, 12 | S3 | 10, 12 | ||||
15, 20 | S4 | 15, 20 | ||||
9, 28 | S8, S27 | 9, 28 | ||||
11, 26 | S4, S7 | 11, 26 | ||||
单相三重故障 | 10, 12, 27 | 无漏误报 | 10, 12, 27 | |||
15, 20, 22 | 无漏误报 | 15, 20, 22 | ||||
9, 25, 28 | 无漏误报 | 9, 25, 28 | ||||
11, 18, 26 | 无漏误报 | 11, 18, 26 | ||||
10, 12, 27 | S4 | 10, 12, 27 | ||||
15, 20, 22 | S3, S14 | 15, 20, 22 | ||||
9, 25, 28 | S6, S14 | 9, 25, 28 | ||||
11, 18, 26 | S3, S6, | 11, 18, 26 |
分类 | 时延/ms | |||||||||
故障检测 | 通信 | 定位 | 开关动作 | 总计 | ||||||
GPRS+ 非线性模型 | <25 | <2000 | <4000 | <70 | <8095 | |||||
4G+ 非线性模型 | <25 | <100 | <4000 | <70 | <4295 | |||||
5G+ 非线性模型 | <25 | <15 | <4000 | <70 | <4110 | |||||
GPRS+ 线性模型 | <25 | <2000 | <200 | <70 | <4295 | |||||
4G+ 线性模型 | <25 | <100 | <200 | <70 | <495 | |||||
5G+ 线性模型 | <25 | <15 | <200 | <70 | <325 |
表 5 各类保护方案的时延对比
Table 5 Time-delay comparison of various protection schemes
分类 | 时延/ms | |||||||||
故障检测 | 通信 | 定位 | 开关动作 | 总计 | ||||||
GPRS+ 非线性模型 | <25 | <2000 | <4000 | <70 | <8095 | |||||
4G+ 非线性模型 | <25 | <100 | <4000 | <70 | <4295 | |||||
5G+ 非线性模型 | <25 | <15 | <4000 | <70 | <4110 | |||||
GPRS+ 线性模型 | <25 | <2000 | <200 | <70 | <4295 | |||||
4G+ 线性模型 | <25 | <100 | <200 | <70 | <495 | |||||
5G+ 线性模型 | <25 | <15 | <200 | <70 | <325 |
通信方式 | 可靠性/% | |||
非线性模型 | 线性模型 | |||
4G和GPRS | 63.45 | 59.17 | ||
5G | 89.28 | 96.42 |
表 6 各类保护方案的可靠性对比
Table 6 Reliability comparison of various protection schemes
通信方式 | 可靠性/% | |||
非线性模型 | 线性模型 | |||
4G和GPRS | 63.45 | 59.17 | ||
5G | 89.28 | 96.42 |
1 |
陈楚昭, 孙云莲. 基于自适应NSGA-Ⅱ算法的配电网多故障抢修优化决策[J]. 电力工程技术, 2022, 41 (3): 125- 132.
DOI |
CHEN Chuzhao, SUN Yunlian. Optimization strategy for multi-fault repair of distribution system based on adaptive NSGA-Ⅱ algorithm[J]. Jiangsu Electrical Engineering, 2022, 41 (3): 125- 132.
DOI |
|
2 |
MORTAZAVI S H, MORAVEJ Z, SHAHRTASH S M. A searching based method for locating high impedance arcing fault in distribution networks[J]. IEEE Transactions on Power Delivery, 2019, 34 (2): 438- 447.
DOI |
3 | 王秋杰, 金涛, 申涛, 等. 利用多因素降维的配电网区段定位 完全解析模型[J]. 电工技术学报, 2019, 34 (14): 3012- 3024. |
WANG Qiujie, JIN Tao, SHEN Tao, et al. A complete analytic model of section location in distribution network based on multi-factor dimensionality deduction[J]. Transactions of China Electrotechnical Society, 2019, 34 (14): 3012- 3024. | |
4 | 倪广魁, 鲍海, 张利, 等. 基于零序电流突变量的配电网单相故障带电定位判据[J]. 中国电机工程学报, 2010, 30 (31): 118- 122. |
NI Guangkui, BAO Hai, ZHANG Li, et al. Criterion based on the fault component of zero sequence current for online fault location of single-phase fault in distribution network[J]. Proceedings of the CSEE, 2010, 30 (31): 118- 122. | |
5 |
马士聪, 徐丙垠, 高厚磊, 等. 检测暂态零模电流相关性的小电流接地故障定位方法[J]. 电力系统自动化, 2008, 32 (7): 48- 52.
DOI |
MA Shicong, XU Bingyin, GAO Houlei, et al. An earth fault locating method in feeder automation system by examining correlation of transient zero mode currents[J]. Automation of Electric Power Systems, 2008, 32 (7): 48- 52.
DOI |
|
6 | 张林利, 高厚磊, 徐丙垠, 等. 基于区段零序导纳的小电流接地故障定位方法[J]. 电力系统自动化, 2012, 36 (20): 94- 98. |
ZHANG Linli, GAO Houlei, XU Bingyin, et al. Fault location method based on zero-sequence admittance of sections in non-effectively grounded system[J]. Automation of Electric Power Systems, 2012, 36 (20): 94- 98. | |
7 |
李孟秋, 王耀南, 王辉, 等. 小电流接地系统单相接地故障点探测方法的研究[J]. 中国电机工程学报, 2001, 21 (10): 6- 9, 23.
DOI |
LI Mengqiu, WANG Yaonan, WANG Hui, et al. A new approach on detecting the single-to ground fault location on power system with neutral unearthed[J]. Proceedings of the CSEE, 2001, 21 (10): 6- 9, 23.
DOI |
|
8 | 张姝, 杨健维, 何正友, 等. 基于线路暂态重心频率的配电网故障区段定位[J]. 中国电机工程学报, 2015, 35 (10): 2463- 2470. |
ZHANG Shu, YANG Jianwei, HE Zhengyou, et al. Fault section location of the distribution network based on transient center frequency[J]. Proceedings of the CSEE, 2015, 35 (10): 2463- 2470. | |
9 |
张利, 杨鹏, 司冬梅, 等. 基于零序功率方向的中性点不接地系统在线故障定位[J]. 电力系统自动化, 2008, 32 (17): 79- 82.
DOI |
ZHANG Li, YANG Peng, SI Dongmei, et al. Online fault location of neutral point ungrounded distribution network based on zero-sequence power direction[J]. Automation of Electric Power Systems, 2008, 32 (17): 79- 82.
DOI |
|
10 | 张林利, 徐丙垠, 薛永端, 等. 基于线电压和零模电流的小电流接地故障暂态定位方法[J]. 中国电机工程学报, 2012, 32 (13): 66- 69. |
ZHANG Linli, XU Bingyin, XUE Yongduan, et al. Transient fault locating method based on line voltage and zero-mode current in non-solidly earthed network[J]. Proceedings of the CSEE, 2012, 32 (13): 66- 69. | |
11 |
梅念, 石东源, 杨增力, 等. 一种实用的复杂配电网故障定位的矩阵算法[J]. 电力系统自动化, 2007, 31 (10): 66- 70.
DOI |
MEI Nian, SHI Dongyuan, YANG Zengli, et al. A practical matrix-based fault location algorithm for complex distribution network[J]. Automation of Electric Power Systems, 2007, 31 (10): 66- 70.
DOI |
|
12 |
束洪春, 孙向飞, 司大军. 基于粗糙集理论的配电网故障诊断研究[J]. 中国电机工程学报, 2001, 21 (10): 73- 77, 82.
DOI |
SHU Hongchun, SUN Xiangfei, SI Dajun. A study of fault diagnosis in distribution line based on rough set theory[J]. Proceedings of the CSEE, 2001, 21 (10): 73- 77, 82.
DOI |
|
13 |
卫志农, 何桦, 郑玉平. 配电网故障区间定位的高级遗传算法[J]. 中国电机工程学报, 2002, 22 (4): 127- 130.
DOI |
WEI Zhinong, HE Hua, ZHENG Yuping. A refined genetic algorithm for the fault sections location[J]. Proceedings of the CSEE, 2002, 22 (4): 127- 130.
DOI |
|
14 |
陈歆技, 丁同奎, 张钊. 蚁群算法在配电网故障定位中的应用[J]. 电力系统自动化, 2006, 30 (5): 74- 77.
DOI |
CHEN Xinji, DING Tongkui, ZHANG Zhao. Ant colony algorithm for solving fault location in distribution networks[J]. Automation of Electric Power Systems, 2006, 30 (5): 74- 77.
DOI |
|
15 | 郭壮志, 吴杰康. 配电网故障区间定位的仿电磁学算法[J]. 中国电机工程学报, 2010, 30 (13): 34- 40. |
GUO Zhuangzhi, WU Jiekang. Electromagnetism-like mechanism based fault section diagnosis for distribution network[J]. Proceedings of the CSEE, 2010, 30 (13): 34- 40. | |
16 | 郑涛, 潘玉美, 郭昆亚, 等. 基于免疫算法的配电网故障定位方法研究[J]. 电力系统保护与控制, 2014, 42 (1): 77- 83. |
ZHENG Tao, PAN Yumei, GUO Kunya, et al. Fault location of distribution network based on immune algorithm[J]. Power System Protection and Control, 2014, 42 (1): 77- 83. | |
17 | 付家才, 陆青松. 基于蝙蝠算法的配电网故障区间定位[J]. 电力系统保护与控制, 2015, 43 (16): 100- 105. |
FU Jiacai, LU Qingsong. Fault sections location of distribution network based on bat algorithm[J]. Power System Protection and Control, 2015, 43 (16): 100- 105. | |
18 | 刘蓓, 汪沨, 陈春, 等. 和声算法在含DG配电网故障定位中的应用[J]. 电工技术学报, 2013, 28 (5): 280- 284. |
LIU Bei, WANG Feng, CHEN Chun, et al. Harmony search algorithm for solving fault location in distribution networks with DG[J]. Transactions of China Electrotechnical Society, 2013, 28 (5): 280- 284. | |
19 | 王秋杰, 金涛, 谭洪, 等. 基于分层模型和智能校验算法的配电网故障定位技术[J]. 电工技术学报, 2018, 33 (22): 5327- 5337. |
WANG Qiujie, JIN Tao, TAN Hong, et al. The technology on fault location of distribution network based on hierarchical model and intelligent checking algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33 (22): 5327- 5337. | |
20 | 郭壮志, 徐其兴, 洪俊杰, 等. 配电网故障区段定位的互补约束新模型与算法[J]. 中国电机工程学报, 2016, 36 (14): 3742- 3750. |
GUO Zhuangzhi, XU Qixing, HONG Junjie, et al. A novel fault section location model with complementarity constraints and its optimization algorithm for distribution network[J]. Proceedings of the CSEE, 2016, 36 (14): 3742- 3750. | |
21 | 郭壮志, 徐其兴, 洪俊杰, 等. 配电网快速高容错性故障定位的线性整数规划方法[J]. 中国电机工程学报, 2017, 37 (3): 786- 794. |
GUO Zhuangzhi, XU Qixing, HONG Junjie, et al. Integer linear programming based fault section diagnosis method with high fault-tolerance and fast performance for distribution network[J]. Proceedings of the CSEE, 2017, 37 (3): 786- 794. | |
22 | 何瑞江, 胡志坚, 李燕, 等. 含分布式电源配电网故障区段定位的线性整数规划方法[J]. 电网技术, 2018, 42 (11): 3684- 3690. |
HE Ruijiang, HU Zhijian, LI Yan, et al. Fault section location method for DG-DNs based on integer linear programming[J]. Power System Technology, 2018, 42 (11): 3684- 3690. | |
23 | 高厚磊, 徐彬, 向珉江, 等. 5G通信自同步配网差动保护研究与应用[J]. 电力系统保护与控制, 2021, 49 (7): 1- 9. |
GAO Houlei, XU Bin, XIANG Minjiang, et al. Research and application of self-synchronized differential protection for distribution networks using 5G as the communication channel[J]. Power System Protection and Control, 2021, 49 (7): 1- 9. | |
24 | 张建雨, 姜睿智, 李俊刚, 等. 基于5G通信的配电网差动保护技术研究[J]. 电力系统保护与控制, 2021, 49 (7): 17- 23. |
ZHANG Jianyu, JIANG Ruizhi, LI Jungang, et al. Research on differential protection of a distribution network based on 5G communication[J]. Power System Protection and Control, 2021, 49 (7): 17- 23. | |
25 | 梁子龙, 李晓悦, 邹荣庆, 等. 基于5G通信智能分布式馈线自动化应用[J]. 电力系统保护与控制, 2021, 49 (7): 24- 30. |
LIANG Zilong, LI Xiaoyue, ZOU Rongqing, et al. Intelligent distributed feeder automation application based on 5G communication[J]. Power System Protection and Control, 2021, 49 (7): 24- 30. | |
26 |
赵艾萱, 黄杨, 宋戈, 等. 5G独立组网模式下的配网保护配置策略及应用[J]. 电力系统保护与控制, 2021, 49 (8): 24- 31.
DOI |
ZHAO Aixuan, HUANG Yang, SONG Ge, et al. Configuration strategy and application of distribution network protection based on standalone 5G[J]. Power System Protection and Control, 2021, 49 (8): 24- 31.
DOI |
|
27 |
程晓平, 章昊, 王同文, 等. 适应5G通信的配电网分布式供电恢复策略[J]. 科学技术与工程, 2022, 22 (5): 1906- 1913.
DOI |
CHENG Xiaoping, ZHANG Hao, WANG Tongwen, et al. Distributed power supply recovery strategy for distribution network adapting to 5G communication[J]. Science Technology and Engineering, 2022, 22 (5): 1906- 1913.
DOI |
|
28 | 何云良, 裘愉涛, 吴路明, 等. 基于5G通信的继电保护技术研究[J]. 电力系统保护与控制, 2021, 49 (7): 31- 38. |
HE Yunliang, QIU Yutao, WU Luming, et al. Research on relay protection based on 5G communication technology[J]. Power System Protection and Control, 2021, 49 (7): 31- 38. | |
29 |
涂崎, 沈冰, 邹晓峰, 等. 5G环境下配网差动保护采样数据缺失应对策略[J]. 电力工程技术, 2022, 41 (3): 143- 151.
DOI |
TU Qi, SHEN Bing, ZOU Xiaofeng, et al. Countermeasures for current differential protection in 5G-based active distribution network under sampling data missing scenario[J]. Jiangsu Electrical Engineering, 2022, 41 (3): 143- 151.
DOI |
[1] | 李铁成, 范辉, 张卫明, 王献志, 张艺宏, 戴志辉. 基于5G通信的有源配电网新能源送出线路纵联保护[J]. 中国电力, 2024, 57(11): 139-150. |
[2] | 朱鹏程, 刘曌煜, 孙可, 徐杰, 胡鹏飞, 江道灼. 基于多分块交替方向乘子法的蜂巢状配电网分布式优化调度[J]. 中国电力, 2023, 56(6): 90-100. |
[3] | 佘蕊, 张宁池, 王艳茹, 郭丹丹, 马文洁, 刘卉, 张洁. 面向电力物联网的5G通信认知无线电NOMA系统研究[J]. 中国电力, 2021, 54(5): 35-45. |
[4] | 赵宏大, 陈琛, 王哲, 王海勇. 电力CPS环境下电力4G无线专网向5G演进策略[J]. 中国电力, 2021, 54(3): 68-79. |
[5] | 赵伟博, 董玉明, 莫娟, 房正刚, 刘蕊. 电力与通信共享铁塔的关键技术与商业模式[J]. 中国电力, 2021, 54(11): 171-180. |
[6] | 徐艳春, 赵彩彩, 孙思涵, MI Lu. 基于改进LMD和能量相对熵的主动配电网故障定位方法[J]. 中国电力, 2021, 54(11): 133-143. |
[7] | 王晓卫, 吴继维, 李然月, 田书, 褚正超. 基于Prony相对熵的故障投票选线新方法[J]. 中国电力, 2013, 46(1): 59-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||