[1] 王思华, 陈龙, 王军军, 等. 复合绝缘子伞套老化状态模糊综合评估[J]. 中国电力, 2021, 54(5): 156–165 WANG Sihua, CHEN Long, WANG Junjun, et al. Fuzzy comprehensive evaluation of aging state of silicone rubber sheds of composite insulators[J]. Electric Power, 2021, 54(5): 156–165 [2] 王思华, 王军军, 赵磊, 等. 污秽成分对复合绝缘子表面电场的影响[J]. 中国电力, 2021, 54(7): 149–157 WANG Sihua, WANG Junjun, ZHAO Lei, et al. Influence of pollution components on surface electric field of composite insulators[J]. Electric Power, 2021, 54(7): 149–157 [3] 黄冬梅, 王玥琦, 胡安铎, 等. 融合多维度特征的绝缘子状态边缘识别方法[J]. 中国电力, 2022, 55(1): 133–141 HUANG Dongmei, WANG Yueqi, HU Anduo, et al. An edge recognition method for insulator state based on multi-dimension feature fusion[J]. Electric Power, 2022, 55(1): 133–141 [4] 张嘉伟, 叶子帆, 王倩, 等. 基于F-P光纤泄漏电流传感器的绝缘子状态监测[J]. 高电压技术, 2022, 48(8): 2915–2923 ZHANG Jiawei, YE Zifan, WANG Qian, et al. Insulator condition monitoring based on F-P optical fiber leakage current sensor[J]. High Voltage Engineering, 2022, 48(8): 2915–2923 [5] 金立军, 田治仁, 高凯, 等. 基于红外与可见光图像信息融合的绝缘子污秽等级识别[J]. 中国电机工程学报, 2016, 36(13): 3682–3691, 3389 JIN Lijun, TIAN Zhiren, GAO Kai, et al. Discrimination of insulator contamination grades using information fusion of infrared and visible images[J]. Proceedings of the CSEE, 2016, 36(13): 3682–3691, 3389 [6] 王晴. 光传感监测绝缘子污秽的成分分析[J]. 电子测量技术, 2018, 41(23): 74–77 WANG Qing. Analysis of natural pollution deposit on optic sensor for monitoring of insulators contamination[J]. Electronic Measurement Technology, 2018, 41(23): 74–77 [7] 律方成, 戴日俊, 王胜辉, 等. 基于紫外成像图像信息的绝缘子表面放电量化方法[J]. 电工技术学报, 2012, 27(2): 261–268 LV Fangcheng, DAI Rijun, WANG Shenghui, et al. Study of insulator surface discharge quantification method based on ultraviolet imaging image information[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 261–268 [8] 李红玲, 文习山. 绝缘子污秽放电声发射的统计指纹分析[J]. 高电压技术, 2010, 36(11): 2705–2710 LI Hongling, WEN Xishan. Statistical fingerprint analysis for contaminated insulator acoustic emission signals[J]. High Voltage Engineering, 2010, 36(11): 2705–2710 [9] 王黎明, 刘霆, 黄睿, 等. 考虑气象、几何参数、大气污染物的绝缘子表面污秽度预测方法[J]. 高电压技术, 2016, 42(3): 876–884 WANG Liming, LIU Ting, HUANG Rui, et al. Contamination prediction on insulators considering of meteorology, geomentric parameters and air pollutant[J]. High Voltage Engineering, 2016, 42(3): 876–884 [10] 周龙武, 龚泽, 上官帖, 等. 基于概率统计与神经网络相结合的绝缘子盐密预测[J]. 水电能源科学, 2015, 33(12): 172–175, 193 ZHOU Longwu, GONG Ze, SHANGGUAN Tie, et al. Prediction of insulator's ESDD based on probability statistics and neural network[J]. Water Resources and Power, 2015, 33(12): 172–175, 193 [11] 吴大伟, 陶汉涛, 张磊, 等. 基于气象参数统计的绝缘子污秽度评估方法[J]. 电瓷避雷器, 2017(4): 194–198 WU Dawei, TAO Hantao, ZHANG Lei, et al. Evaluation method of insulator contamination based on meteorological parameter statistics[J]. Insulators and Surge Arresters, 2017(4): 194–198 [12] 王自立, 卢明, 姜昀芃, 等. 基于遗传神经网络对运行线路绝缘子污秽度的预测[J]. 电瓷避雷器, 2018(2): 172–179 WANG Zili, LU Ming, JIANG Yunpeng, et al. Prediction of contamination degree of line insulators based on genetic neural network[J]. Insulators and Surge Arresters, 2018(2): 172–179 [13] 吴胜磊, 滕松, 刘振华, 等. 数据驱动的绝缘子积污特征量识别与污秽度预测[J]. 电力工程技术, 2019, 38(6): 179–186 WU Shenglei, TENG Song, LIU Zhenhua, et al. Identification of pollution characteristics of transmission line insulator and pollution prediction based on data driven[J]. Electric Power Engineering Technology, 2019, 38(6): 179–186 [14] 高嵩, 刘洋, 曹彬, 等. 自然降雨对绝缘子自然污秽冲洗效果的影响研究[J]. 电瓷避雷器, 2020(6): 159–163, 170 GAO Song, LIU Yang, CAO Bin, et al. Research on the cleaning effect of natural rainfall on the naturally contaminated insulators[J]. Insulators and Surge Arresters, 2020(6): 159–163, 170 [15] 董海燕, 张友鹏, 李少远, 等. 超大伞裙腕臂复合绝缘子积污分布的风洞模拟[J]. 浙江大学学报(工学版), 2019, 53(8): 1563–1571 DONG Haiyan, ZHANG Youpeng, LI Shaoyuan, et al. Wind tunnel simulation on contamination distribution of canti-lever composite insulator with booster sheds[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(8): 1563–1571 [16] 李特, 吴金木, 陈乔, 等. 基于大气环境质量及气象参数的绝缘子积污预测研究现状[J]. 高压电器, 2017, 53(1): 175–180 LI Te, WU Jinmu, CHEN Qiao, et al. Research status of insulator contamination prediction based on air environment quality and meteorological data[J]. High Voltage Apparatus, 2017, 53(1): 175–180 [17] 李恒真. 高压输电线路外绝缘动态积污机理及在线监测研究[D]. 广州: 华南理工大学, 2012. LI Hengzhen. Study on the mechanism of dynamic contamination accumulating and its on-line monitoring of external insulation of high voltage transmission line[D]. Guangzhou: South China University of Technology, 2012. [18] 国家电网有限公司. 电力系统污区分级与外绝缘选择标准 第1部分交流系统: Q/GDW 1152.1—2014[S]. 北京: 中国电力出版社, 2015. [19] 李郅琴, 杜建强, 聂斌, 等. 特征选择方法综述[J]. 计算机工程与应用, 2019, 55(24): 10–19 LI Zhiqin, DU Jianqiang, NIE Bin, et al. Summary of feature selection methods[J]. Computer Engineering and Applications, 2019, 55(24): 10–19 [20] 王干军, 李锦舒, 吴毅江, 等. 基于随机森林的高压电缆局部放电特征寻优[J]. 电网技术, 2019, 43(4): 1329–1336 WANG Ganjun, LI Jinshu, WU Yijiang, et al. Random forest based feature selection for partial discharge recognition of HV cables[J]. Power System Technology, 2019, 43(4): 1329–1336 [21] 金颀, 邱志斌, 阮江军, 等. 球隙最短路径电场特征集与特征选择方法[J]. 电力科学与技术学报, 2020, 35(6): 12–20 JIN Qi, QIU Zhibin, RUAN Jiangjun, et al. Study on electric field features for the shortest path of sphere gap and the feature selection methods[J]. Journal of Electric Power Science and Technology, 2020, 35(6): 12–20 [22] 姚锐, 惠萌, 李俊, 等. 基于随机森林的局部放电特征提取和优选研究[J]. 华北电力大学学报(自然科学版), 2021, 48(4): 63–72 YAO Rui, HUI Meng, LI Jun, et al. Feature extraction and optimal selection based on random forest for partial discharges[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(4): 63–72 [23] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489–501. [24] 孙承意, 谢克明, 程明琦. 基于思维进化机器学习的框架及新进展[J]. 太原理工大学学报, 1999, 30(5): 453–457 SUN Chengyi, XIE Keming, CHENG Mingqi. Mind evolution based machine learning framework and new development[J]. Journal of Taiyuan University of Technology, 1999, 30(5): 453–457 [25] 周子东, 李东伟, 李国胜, 等. 基于逐步回归的AdaBoost-SVR模型在海上风电项目造价预测中的应用[J]. 太阳能学报, 2020, 41(7): 259–264 ZHOU Zidong, LI Dongwei, LI Guosheng, et al. Application of Ada Boost-SVR model based on stepwise regression in cost forecast of offshore wind power[J]. Acta Energiae Solaris Sinica, 2020, 41(7): 259–264 [26] 高阳, 谢丽蓉, 叶家豪, 等. 自适应提升及预测误差修正的风电功率超短期预测[J]. 智慧电力, 2022, 50(8): 14–21 GAO Yang, XIE Lirong, YE Jiahao, et al. Ultra-short-term wind power prediction based on adaptive lifting and prediction error correction[J]. Smart Power, 2022, 50(8): 14–21 [27] 赵建辉, 张晨阳, 闵林, 等. 基于特征选择和GA-BP神经网络的多源遥感农田土壤水分反演[J]. 农业工程学报, 2021, 37(11): 112–120 ZHAO Jianhui, ZHANG Chenyang, MIN Lin, et al. Retrieval for soil moisture in farmland using multi-source remote sensing data and feature selection with GA-BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 112–120 [28] 游文霞, 李清清, 杨楠, 等. 基于多异学习器融合Stacking集成学习的窃电检测[J]. 电力系统自动化, 2022, 46(24): 178–186 YOU Wenxia, LI Qingqing, YANG Nan, et al. Electricity theft detection based on multiple different learner fusion by Stacking ensemble learning[J]. Automation of Electric Power Systems, 2022, 46(24): 178–186
|