[1] 杨帆. 人类命运共同体视域下的全球生态保护与治理研究[D]. 长春: 吉林大学, 2020. YANG Fan. Study on the global ecological ecological protection and governance under the perspective of building a human community with a shared future [D]. Changchun: Jilin University, 2020. [2] 黄宗龙, 江修波, 刘丽军. 低碳化背景下配电网“源—储—荷”多目标优化配置[J]. 电力科学与技术学报, 2020, 35(5): 36–45 HUANG Zonglong, JIANG Xiubo, LIU Lijun. Multi-objective optimal allocation of "generation-storage-load" under the low-carbon background[J]. Journal of Electric Power Science and Technology, 2020, 35(5): 36–45 [3] 李猛. “双碳”目标背景下完善我国碳中和立法的理论基础与实现路径[J]. 社会科学研究, 2021(6): 90–101 LI Meng. Improvement of the theoretical basis and realization path for carbon neutrality legislation in China under the background of "double carbon" goal[J]. Social Science Research, 2021(6): 90–101 [4] 文明, 胡资斌, 龙乙林, 等. 考虑碳排放惩罚因子的综合能源系统优化规划[J]. 电力科学与技术学报, 2021, 36(3): 11–18 WEN Ming, HU Zibin, LONG Yilin, et al. Optimal planning of integrated energy system considering carbon emission penalty factor[J]. Journal of Electric Power Science and Technology, 2021, 36(3): 11–18 [5] 姜大霖, 杨琳, 魏宁, 等. 燃煤电厂实施CCUS改造适宜性评估: 以原神华集团电厂为例[J]. 中国电机工程学报, 2019, 39(19): 5835–5842,5912 JIANG Dalin, YANG Lin, WEI Ning, et al. Suitability of retrofitting CCUS to existing coal-fired power plants: a case study of former Shenhua Group[J]. Proceedings of the CSEE, 2019, 39(19): 5835–5842,5912 [6] 张美珍. 中国煤炭清洁发电技术扩散及其驱动政策研究[D]. 徐州: 中国矿业大学, 2020. ZHANG Meizhen. Diffusion of China's clean coal-fired power generation technologies and its driving policies[D]. Xuzhou: China University of Mining and Technology, 2020. [7] 薛小军, 侯智华, 张红昌, 等. 碳中和背景下燃气热电联产与地源热泵耦合替代燃气锅炉供热研究[J]. 动力工程学报, 2022, 42(4): 359–364,386 XUE Xiaojun, HOU Zhihua, ZHANG Hongchang, et al. Study on replacing gas-fired boiler by gas-fired cogeneration coupled with ground source heat pump for heat pump for heating under carbon neutral background[J]. Journal of Chinese Society of Power Engineering, 2022, 42(4): 359–364,386 [8] 梁占伟, 张磊, 徐亚涛, 等. 高背压供热机组供热温度特性与㶲分析[J]. 热力发电, 2020, 49(1): 17–25 LIANG Zhanwei, ZHANG Lei, XU Yatao, et al. Heating temperature characteristics and exergy analysis for high back pressure heating unit[J]. Thermal Power Generation, 2020, 49(1): 17–25 [9] 刘铸, 宋建成, 马素霞, 等. 2×300 MW热电联产机组灵活性供热控制策略研发[J]. 动力工程学报, 2022, 42(4): 387–392 LIU Zhu, SONG Jiancheng, MA Suxia, et al. Research and development of flexible heating control strategy for 2×300 MW cogeneration units[J]. Journal of Chinese Society of Power Engineering, 2022, 42(4): 387–392 [10] 宣伟东. 300 MW机组高低旁路联合供热改造实践分析[J]. 节能技术, 2020, 38(6): 561–564 XUAN Weidong. Practical analysis of high and low bypass combined heating system for 300 MW units[J]. Energy Conservation Technology, 2020, 38(6): 561–564 [11] 靖长财, 王凤池. 660 MW超临界空冷机组提升供热经济性与灵活性研究[J]. 能源科技, 2021, 19(1): 46–49 JING Changcai, WANG Fengchi. Research on improving heating economy and flexibility of 660 MW supercritical air-cooled unit[J]. Energy Technology, 2021, 19(1): 46–49 [12] 郭建. 供热机组热电耦合特性与运行优化研究[D]. 南京: 东南大学, 2020. GUO Jian. Study on thermoelectric coupling characteristics and operation[D]. Nanjing: Southeast University, 2020. [13] 梁占伟, 杨承刚, 张磊, 等. 基于单耗理论的抽汽耦合高背压供热优化[J]. 中国电力, 2019, 52(12): 171–178 LIANG Zhanwei, YANG Chenggang, ZHANG Lei, et al. Optimization of steam extraction combined high back pressure heating based on specific consumption theory[J]. Electric Power, 2019, 52(12): 171–178 [14] 梁占伟, 张磊, 徐亚涛, 等. 双机联调抽汽-高背压联合供热㶲分析与优化[J]. 动力工程学报, 2020, 40(3): 247–255 LIANG Zhanwei, ZHANG Lei, XU Yatao, et al. Exergy analysis and optimization of steam extraction-high back pressure combined heating for dual cogeneration units[J]. Journal of Chinese Society of Power Engineering, 2020, 40(3): 247–255 [15] 石慧, 王洋, 马汀山, 等. 多机组、多模式的热电联产厂级供热优化[J]. 热力发电, 2022, 51(1): 123–129 SHI Hui, WANG Yang, MA Tingshan, et al. Plant-level heating optimization for multi-unit and multi-mode cogeneration[J]. Thermal Power Generation, 2022, 51(1): 123–129 [16] 王建勋. 空冷机组低位能分级混合加热供热技术的应用及经济性分析[J]. 汽轮机技术, 2019, 61(5): 387–391 WANG Jianxun. Application of heat supply technology of cascade mixing heating using low-grade energy for air-cooled unit and economic analysis of the whole power plant[J]. Turbine Technology, 2019, 61(5): 387–391 [17] 王洋, 马汀山, 吕凯, 等. 热网循环水泵驱动方式对供热机组综合能耗的影响研究[J]. 热力发电, 2022, 51(5): 73–80 WANG Yang, MA Tingshan, LU Kai, et al. Study on influence of driving modes of circulating water pump in heat supply network on comprehensive energy consumption of cogeneration power unit[J]. Thermal Power Generation, 2022, 51(5): 73–80 [18] 汤木易, 罗毅, 胡博, 等. 电热联合调度模型综述[J]. 电力系统保护与控制, 2020, 48(23): 161–175 TANG Muyi, LUO Yi, HU Bo, et al. A review of the dispatch model of a combined heat and power system[J]. Power System Protection and Control, 2020, 48(23): 161–175 [19] 吴伟杰, 吴杰康, 雷振, 等. CCHP用户冷热电负荷预测的纵横交叉优化深度信念网络方法[J]. 南方电网技术, 2021, 15(12): 1–10 WU Weijie, WU Jiekang, LEI Zhen, et al. CSO optimized deep belief network based method for cooling heating and power load forecasting of CCHP users[J]. Southern Power System Technology, 2021, 15(12): 1–10 [20] 黄柯蒙, 刘继春. 计及需求响应和热电联产的多微电网联盟优化调度方法[J]. 智慧电力, 2021, 49(6): 107–115 HUANG Kemeng, LIU Jichun. Optimal dispatch method of multi-microgrid alliance considering demand response & CHP[J]. Smart Power, 2021, 49(6): 107–115 [21] 董彧彤, 王艳松, 倪承波, 等. 计及用热舒适度弹性的热电联合优化调度[J]. 电力系统保护与控制, 2021, 49(23): 26–34 DONG Yutong, WANG Yansong, NI Chengbo, et al. Dispatch of a combined heat-power system considering elasticity with thermal comfort[J]. Power System Protection and Control, 2021, 49(23): 26–34 [22] SONG Z P. Total energy system analysis of heating[J]. Energy, 2000, 25(9): 807–822.
|