[1] 樊帅, 唐群先. 基于AdaBoost-SAMME的风力发电机组变桨异常识别系统[J]. 电力系统保护与控制, 2020, 48(21): 31–40 FAN Shuai, TANG Qunxian. Wind turbine pitch anomaly recognition system based on AdaBoost-SAMME[J]. Power System Protection and Control, 2020, 48(21): 31–40 [2] 张镇, 关书强. 风电机组故障统计分析研究[J]. 风能, 2013(8): 68–71 ZHANG Zhen, GUAN Shuqiang. An analysis of wind turbine fault statistics[J]. Wind Energy, 2013(8): 68–71 [3] 陈茜, 李录平, 刘瑞, 等. 大功率风电机组变桨系统故障诊断方法与技术研究进展[J]. 电站系统工程, 2020, 36(1): 1–7 CHEN Xi, LI Luping, LIU Rui, et al. Review on research progress of fault diagnosis method and technology for variable pitch system of high power wind generating set[J]. Power System Engineering, 2020, 36(1): 1–7 [4] YANG W X, COURT R, JIANG J S. Wind turbine condition monitoring by the approach of SCADA data analysis[J]. Renewable Energy, 2013, 53: 365–376. [5] 童超, 郭鹏. 基于特征选择和BP神经网络的风电机组故障分类监测研究[J]. 动力工程学报, 2014, 34(4): 313–317 TONG Chao, GUO Peng. Wind turbine fault classification based on BP neural network and feature selection algorithm[J]. Journal of Chinese Society of Power Engineering, 2014, 34(4): 313–317 [6] 李伟昌, 张磊. 基于风力发电系统的风电机组变桨距故障诊断[J]. 计算机仿真, 2015, 32(9): 147–151 LI Weichang, ZHANG Lei. Faults diagnosis of wind turbine pitch system based on ANFIS[J]. Computer Simulation, 2015, 32(9): 147–151 [7] YU D, CHEN Z M, XIAHOU K S, et al. A radically data-driven method for fault detection and diagnosis in wind turbines[J]. International Journal of Electrical Power & Energy Systems, 2018, 99: 577–584. [8] 高峰, 邓星星, 刘强, 等. 大型风电机组电动变桨系统变桨角度故障诊断[J]. 太阳能学报, 2020, 41(5): 98–106 GAO Feng, DENG Xingxing, LIU Qiang, et al. Fault diagnosis of electric pitch system for mW wind turbine[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 98–106 [9] 黄景林, 彭显刚, 简胜超, 等. 基于深度学习与不平衡样本集的输电线路故障分类[J]. 智慧电力, 2021, 49(2): 114–119 HUANG Jinglin, PENG Xiangang, JIAN Shengchao, et al. Transmission line fault classification based on deep learning and imbalanced sample set[J]. Smart Power, 2021, 49(2): 114–119 [10] 熊中杰, 邱颖宁, 冯延晖, 等. 基于机器学习的风电机组变桨系统故障研究[J]. 太阳能学报, 2020, 41(5): 85–90 XIONG Zhongjie, QIU Yingning, FENG Yanhui, et al. Fault analysis of wind turbine pitch system based on machine learning[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 85–90 [11] 褚景春, 王飞, 汪杨, 等. 基于故障树和概率神经网络的风电机组故障诊断方法[J]. 太阳能学报, 2018, 39(10): 2901–2907 CHU Jingchun, WANG Fei, WANG Yang, et al. Fault diagnosis method of wind turbine based on fault tree and probabilistic neural network[J]. Acta Energiae Solaris Sinica, 2018, 39(10): 2901–2907 [12] 赵俊杰. 基于特征加权的KNNFP改进算法及在故障诊断中的应用[J]. 电子技术应用, 2011, 37(4): 113–116, 121 ZHAO Junjie. A novel feature weighted KNNFP algorithm and application of its fault diagnosis[J]. Application of Electronic Technique, 2011, 37(4): 113–116, 121 [13] 童超. 基于数据挖掘方法的风电机组状态监测研究[D]. 北京: 华北电力大学, 2014. TONG Chao. Research on wind turbine condition monitoring based on data mining[D]. Beijing: North China Electric Power University, 2014. [14] REZAMAND M, KORDESTANI M, CARRIVEAU R, et al. A new hybrid fault detection method for wind turbine blades using recursive PCA and wavelet-based PDF[J]. IEEE Sensors Journal, 2020, 20(4): 2023–2033. [15] 戴巨川, 曹俊伟, 张帆, 等. 风电场SCADA数据预处理方法及评价策略[J]. 太阳能学报, 2017, 38(9): 2597–2604 DAI Juchuan, CAO Junwei, ZHANG Fan, et al. Data pre-processing method and its evaluation strategy of scada data from wind farm[J]. Acta Energiae Solaris Sinica, 2017, 38(9): 2597–2604 [16] WU Z D, WANG X L, JIANG B C. Fault diagnosis for wind turbines based on ReliefF and eXtreme gradient boosting[J]. Applied Sciences, 2020, 10(9): 3258. [17] 李辉, 杨超, 李学伟, 等. 风机电动变桨系统状态特征参量挖掘及异常识别[J]. 中国电机工程学报, 2014, 34(12): 1922–1930 LI Hui, YANG Chao, LI Xuewei, et al. Conditions characteristic parameters mining and outlier identification for electric pitch system of wind turbine[J]. Proceedings of the CSEE, 2014, 34(12): 1922–1930 [18] 朱丽娜, 王学杰, 张进杰. 基于ReliefF-PCA和SVM的发动机故障诊断方法研究[J]. 北京化工大学学报(自然科学版), 2018, 45(1): 55–59 ZHU Lina, WANG Xuejie, ZHANG Jinjie. An engine fault diagnosis method based on ReliefF-PCA and SVM[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(1): 55–59 [19] 朱向利. 基于KNN算法的柴油机故障诊断方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. ZHU Xiangli. Study on the diesel engine fault diagnosis method based on KNN algorithm[D]. Harbin: Harbin Engineering University, 2016. [20] 冯立伟, 张成, 李元, 等. 基于标准距离k近邻的多模态过程故障检测策略[J]. 控制理论与应用, 2019, 36(4): 553–560 FENG Liwei, ZHANG Cheng, LI Yuan, et al. Fault detection strategy of standard-distance-based k nearest neighbor rule in multimode processes[J]. Control Theory & Applications, 2019, 36(4): 553–560 [21] POZO F, VIDAL Y, SALGADO Ó. Wind turbine condition monitoring strategy through multiway PCA and multivariate inference[J]. Energies, 2018, 11(4): 749. [22] LAHDHIRI H, ELAISSI I, TAOUALI O, et al. Nonlinear process monitoring based on new reduced Rank-KPCA method[J]. Stochastic Environmental Research and Risk Assessment, 2018, 32(6): 1833–1848. [23] 刘发升, 董清龙, 李文静. 变精度粗糙集的加权KNN文本分类算法[J]. 计算机工程与设计, 2019, 40(5): 1339–1342, 1364 LIU Fasheng, DONG Qinglong, LI Wenjing. Weighted KNN text classification algorithm for variable precision rough sets[J]. Computer Engineering and Design, 2019, 40(5): 1339–1342, 1364 [24] 陈自强, 程健, 季文强, 等. 基于深度置信网络风电机组变桨系统的故障诊断[J]. 测控技术, 2019, 38(5): 18–22 CHEN Ziqiang, CHENG Jian, JI Wenqiang, et al. Fault diagnosis of wind turbine pitch system based on deep belief network[J]. Measurement & Control Technology, 2019, 38(5): 18–22 [25] 龚妙. 基于BP神经网络的风力机叶片覆冰状态诊断技术研究[D]. 长沙: 长沙理工大学, 2019. GONG Miao. Research on diagnosis technology of ice accretion on wind turbine blades based on BP neural network[D]. Changsha: Changsha University of Science & Technology, 2019.
|