[1] WANG Y B, TAN H Z, DONG K, et al. Study of ash fouling on the blade of induced fan in a 330 MW coal-fired power plant with ultra-low pollutant emission[J]. Applied Thermal Engineering, 2017, 118:283-291. [2] LIU X, TAN H Z, WANG Y B, et al. Low NOx combustion and SCR flow field optimization in a low volatile coal fired boiler[J]. Journal of Environmental Management, 2018, 220:30-35. [3] 吕洪坤, 童家麟, 刘建忠, 等. 1000 MW超超临界锅炉高温腐蚀分析及对策[J]. 北京工业大学学报, 2017, 43(3):481-488 LV Hongkun, TONG Jialin, LIU Jianzhong, et al. Analysis and solution of high-temperature corrosion for a 1 000 MW ultra-supercritical boiler[J]. Journal of Beijing University of Technology, 2017, 43(3):481-488 [4] XIONG X H, LIU X, TAN H Z, et al. Investigation on high temperature corrosion of water-cooled wall tubes at a 300 MW boiler[J]. Journal of the Energy Institute, 2020, 93(1):377-386. [5] 徐力刚, 黄亚继, 王健, 等. 还原性气氛下水冷壁材料15CrMoG的高温腐蚀特性[J]. 浙江大学学报(工学版), 2018, 52(8):1535-1541, 1550 XU Ligang, HUANG Yaji, WANG Jian, et al. High-temperature corrosion properties of water wall material 15CrMoG under reducing atmosphere[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(8):1535-1541, 1550 [6] 冯强, 张志刚, 张世平, 等. 四角切圆锅炉H2S分布特性及贴壁风喷口研究[J]. 华北电力大学学报(自然科学版), 2018, 45(6):91-99 FENG Qiang, ZHANG Zhigang, ZHANG Shiping, et al. Research on H2S distribution characteristics in tangentially fired boiler and nozzle of near-wall air[J]. Journal of North China Electric Power University (Nature Science Edition), 2018, 45(6):91-99 [7] PRIYANTO D E, MATSUNAGA Y, UENO S, et al. Co-firing high ratio of woody biomass with coal in a 150 MW class pulverized coal boiler:properties of the initial deposits and their effect on tube corrosion[J]. Fuel, 2017, 208:714-721. [8] ZHANG S, LI H, JIANG Z, et al. Chloride-and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment[J]. Corrosion Science, 2020, 163:108295. [9] YU X, GONG B, GAO Q, et al. Investigation of fireside corrosion at water-cooled wall from a coal-fired power plant in China[J]. Applied Thermal Engineering, 2017, 127:1164-1171. [10] KAWASE M, IDO A, MORINAGA M. Development of SiO2/TiO2/Al2O3-based/TiO2 coating for preventing sulfide corrosion in thermal power plant boilers[J]. Applied Thermal Engineering, 2019, 153:242-249. [11] 张知翔, 成丁南, 边宝, 等. 水冷壁材料在模拟烟气中的高温腐蚀研究[J]. 材料工程, 2011(4):14-19 ZHANG Zhixiang, CHENG Dingnan, BIAN Bao, et al. Study on high temperature corrosion of water wall materials in simulated furnace atmosphere[J]. Journal of Materials Engineering, 2011(4):14-19 [12] 刘昕昶, 张新闻, 昌小朋, 等. 温度对超临界锅炉水冷壁高温腐蚀影响的实验研究[J]. 工业炉, 2019(4):26-31 LIU Xinchang, ZHANG Xinwen, CHANG Xiaopeng, et al. Experimental study on influence of temperature for high temperature corrosion on waterwall of supercritical boiler[J]. Industrial Furnace, 2019(4):26-31 [13] 童家麟, 齐晓娟, 吕洪坤. 掺烧高硫煤对某600 MW机组锅炉的影响及运行优化[J]. 热力发电, 2019, 48(10):128-133 TONG Jialin, QI Xiaojuan, LV Hongkun. Influence of co-firing high sulfur coals on operation of a 600 MW unit boiler and the operation optimization[J]. Thermal Power Generation, 2019, 48(10):128-133 [14] 岳峻峰, 邹磊, 张恩先, 等. 1000 MW超超临界二次再热锅炉降低水冷壁高温腐蚀影响的试验研究[J]. 动力工程学报, 2018, 38(10):773-781 YUE Junfeng, ZOU Lei, ZHANG Enxian, et al. High-temperature corrosion tests for the water wall of a 1000 MW ultra supercritical coal-fired boiler with double reheat cycles[J]. Journal of Chinese Society of Power Engineering, 2018, 38(10):773-781 [15] 裴建军, 张泽, 由长福. 墙式风射流改善煤粉炉内燃烧组织的研究[J]. 中国电机工程学报, 2018, 38(16):4792-4798, 4984 PEI Jianjun, ZHANG Ze, YOU Changfu. Improving the combustion organization of furnace by wall wind injections in pulverized coal-fired boiler[J]. Proceedings of the CSEE, 2018, 38(16):4792-4798, 4984 [16] 张锋, 宋立斌, 严俊山, 等. W火焰锅炉高温腐蚀问题分析及调整策略[J]. 洁净煤技术, 2016(5):41-47 ZHANG Feng, SONG Libin, YAN Junshan, et al. Solutions to sulfide high temperature corrosion problem in W flame boiler[J]. Clean Coal Technology, 2016(5):41-47 [17] KAWAHARA Y. An overview on corrosion-resistant coating technologies in biomass/waste-to-energy plants in recent decades[J]. Coatings, 2016, 6(3):34. [18] XU M, YAN R, ZHENG C, et al. Status of trace element emission in a coal combustion process:a review[J]. Fuel Processing Technology, 2004, 85(2-3):215-237. [19] HUANG Y, JIN B, ZHONG Z, et al. Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler[J]. Fuel Processing Technology, 2004, 86(1):23-32. [20] FRANDSEN F, DAM-JOHANSEN K, RASMUSSEN P. Trace elements from combustion and gasification of coal-an equilibrium approach[J]. Progress in Energy and Combustion Science, 1994, 20(2):115-138. [21] WANG J, TOMITA A. A chemistry on the volatility of some trace elements during coal combustion and pyrolysis[J]. Energy & Fuels, 2003, 17(4):954-960. [22] SENIOR C L, ZENG T, CHE J, et al. Distribution of trace elements in selected pulverized coals as a function of particle size and density[J]. Fuel Processing Technology, 2000, 63(2-3):215-241. [23] 刘佳, 黄菲, 孟林, 等. 水热条件下生长 FeS2-Fe1- xS异质结构的光吸收特征研究[J]. 光谱学与光谱分析, 2015, 35(5):1290-1293 LIU Jia, HUANG Fei, MENG Lin, et al. Light absorption characteristics of FeS2-Fe1-xS heterostructures synthesized under hydrothermal conditions[J]. Spectroscopy and Spectral Analysis, 2015, 35(5):1290-1293 [24] VEJAHATI F, XU Z, GUPTA R. Trace elements in coal:associations with coal and minerals and their behavior during coal utilization-a review[J]. Fuel, 2010, 89(4):904-911. [25] WANG Y, TAN H Z. Condensation of KCl(g) under varied temperature gradient[J]. Fuel, 2019, 237:1141-1150. [26] ZENG T, SAROFIM A F, SENIOR C L. Vaporization of arsenic, selenium and antimony during coal combustion[J]. Combustion and Flame, 2001, 126(3):1714-1724. [27] SENIOR C L, BOOL III L E, SRINIVASACHAR S, et al. Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal[J]. Fuel Processing Technology, 2000, 63(2-3):149-165. [28] LEE C M, DAVIS K A, HEAP M P, et al. Modeling the vaporization of ash constituents in a coal-fired boiler[J]. Proceedings of the Combustion Institute, 2000, 28(2):2375-2382. [29] QUANN R J, SAROFIM A F. Vaporization of refractory oxides during pulverized coal combustion[C]//Symposium (international) on combustion. Elsevier, 1982, 19(1):1429-1440. [30] NEVILLE M, SAROFIM A F. The fate of sodium during pulverized coal combustion[J]. Fuel, 1985, 64(3):384-390. [31] FINKELMAN R B, PALMER C A, WANG P. Quantification of the modes of occurrence of 42 elements in coal[J]. International Journal of Coal Geology, 2018, 185:138-160. [32] BARTOŇOVÁ L, RACLAVSKÁ H, ČECH B, et al. Behavior of Pb during coal combustion:an overview[J]. Sustainability, 2019, 11(21):6061. [33] SMITH R D. The trace element chemistry of coal during combustion and the emissions from coal-fired plants[J]. Progress in Energy and Combustion Science, 1980, 6(1):53-119. [34] 桂雍, 梁志远, 郭亭山, 等. 超临界二氧化碳环境中耐热材料的腐蚀行为研究[J]. 动力工程学报, 2021, 41(7):602-608, 616 GUI Yong, LIANG Zhiyuan, GUO Tingshan, et al. Corrosion behavior of heat-resistant materials in supercritical carbon dioxide environment[J]. Journal of Chinese Society of Power Engineering, 2021, 41(7):602-608, 616 [35] 陈土春, 向军淮, 江龙发, 等. Q235钢在氧化性含Cl气氛中的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4):560-564 CHEN Tuchun, XIANG Junhuai, JIANG Longfa, et al. High-temperature corrosion behavior of Q235 steel in oxidizing atmosphere containing chlorine[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(4):560-564 [36] 姚力. 某330MW四角切圆燃烧锅炉水冷壁高温腐蚀原因分析及调整研究[J]. 电站系统工程, 2021, 37(2):23-26, 29 YAO Li. Cause analysis and adjustment of high temperature corrosion of water-wall of a 330MW tangential firing boiler[J]. Power System Engineering, 2021, 37(2):23-26, 29 [37] 王栋, 赵广家, 李韩英, 等. 1000 MW机组超超临界锅炉燃用高硫煤性能试验研究[J]. 能源与节能, 2021(1):157-160 WANG Dong, ZHAO Guangjia, LI Hanying, et al. Experimental study on performance of ultra-supercritical 1 000 MW unit boiler burning high-sulfur coal[J]. Energy and Energy Conservation, 2021(1):157-160 [38] 李定青, 李德波, 毕武林, 等. 掺烧高岭土对CFB锅炉高温受热面沉积和腐蚀特性影响研究[J]. 浙江电力, 2020, 39(12):112-116 LI Dingqing, LI Debo, BI Wulin, et al. Impact study of blended kaolinite on deposition and corrosion characteristics of high-temperature heating surface of CFB boilers[J]. Zhejiang Electric Power, 2020, 39(12):112-116
|