[1] ANDERSSON D, PETERSSON A, AGNEHOLM E, et al. Kriegers flak 640 MW off-shore wind power grid connection: a real project case study[J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 79-85. [2] LIU W T, WU Y K, LEE C Y, et al. Effect of low-voltage-ride-through technologies on the first Taiwan offshore wind farm planning[J]. IEEE Transactions on Sustainable Energy, 2010, 2(1): 78-86. [3] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459-5466 WANG Xifan, WEI Xiaohui, NING Lianhui, et al. Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466 [4] 陈鹤林. 风电直流并网关键技术研究[D]. 杭州: 浙江大学, 2018. CHEN Helin. Research on key technologies of wind power HVDC integration[D]. Hangzhou: Zhejiang University, 2018. [5] MUYEEN S M, TAKAHASHI R, TAMURA J. Operation and control of HVDC-connected offshore wind farm[J]. IEEE Transactions on Sustainable Energy, 2010, 1(1): 30-37. [6] 邓银秋, 汪震, 韩俊飞, 等. 适用于海上风电接入的多端柔直网内不平衡功率优化分配控制策略[J]. 中国电机工程学报, 2020, 40(8): 2406-2416 DENG Yinqiu, WANG Zhen, HAN Junfei, et al. Control strategy on optimal redistribution of unbalanced power for offshore wind farms integrated VSC-MTDC[J]. Proceedings of the CSEE, 2020, 40(8): 2406-2416 [7] 辛业春, 王威儒, 李国庆, 等. 海上风电MMC-HVDC联网系统控制策略[J]. 太阳能学报, 2019, 40(6): 1731-1738 XIN Yechun, WANG Weiru, LI Guoqing, et al. Control strategy on grid connected offshore wind farm based on MMC-HVDC[J]. Acta Energiae Solaris Sinica, 2019, 40(6): 1731-1738 [8] FOSTER S, XU L, FOX B. Control of an LCC HVDC system for connecting large offshore wind farms with special consideration of grid fault[C]//2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, July 20-24, 2008. Pittsburgh, PA, USA. IEEE, 2008: 1-8. [9] 于洋, 徐政, 徐谦, 等. 永磁直驱式风机采用混合直流并网的控制策略[J]. 中国电机工程学报, 2016, 36(11): 2863-2870 YU Yang, XU Zheng, XU Qian, et al. A control strategy for integration of permanent magnet direct-driven wind turbines through a hybrid HVDC system[J]. Proceedings of the CSEE, 2016, 36(11): 2863-2870 [10] ZENG R, XU L, YAO L Z, et al. Hybrid HVDC for integrating wind farms with special consideration on commutation failure[J]. IEEE Transactions on Power Delivery, 2016, 31(2): 789-797. [11] Siemens A G. Siemens revolutionizes grid connection for offshore wind power plants[DB/OL]. (2015-10-23)[2019-12-28].https://www.3blmedia.com/News/Siemens-Revolutionizes-Grid-Connection-Offshore-Wind-Power-Plants. [12] 徐政. 高比例非同步机电源电网面临的三大技术挑战[J]. 南方电网技术, 2020, 14(2): 1-9 XU Zheng. Three technical challenges faced by power grids with high proportion of non-synchronous machine sources[J]. Southern Power System Technology, 2020, 14(2): 1-9 [13] BLASCO-GIMENEZ R, A?ó-VILLALBA S, RODRíGUEZ-D'DERLéE J, et al. Distributed voltage and frequency control of offshore wind farms connected with a diode-based HVDC link[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 3095-3105. [14] YU L J, LI R, XU L. Parallel operation of diode-rectifier based HVDC link and HVAC link for offshore wind power transmission[J]. The Journal of Engineering, 2019, 2019(18): 4713-4717. [15] CHANG Y R, CAI X. Hybrid topology of a diode-rectifier-based HVDC system for offshore wind farms[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(3): 2116-2128. [16] 周长春, 徐政. 直流输电准稳态模型有效性的仿真验证[J]. 中国电机工程学报, 2003, 23(12): 33-36 ZHOU Changchun, XU Zheng. Simulation validity test of the hvdc quasi-steady-state model[J]. Proceedings of the CSEE, 2003, 23(12): 33-36 [17] LI P M, HAO Q R. The algorithm for the parameters of AC filters in HVDC transmission system[C]//2008 IEEE/PES Transmission and Distribution Conference and Exposition, April 21-24, 2008. Chicago, IL, USA. IEEE, 2008. [18] CHUNG S K. A phase tracking system for three phase utility interface inverters[J]. IEEE Transactions on Power Electronics, 2000, 15(3): 431-438. [19] DONG, WEN B, MATTAVELLI P, et al. Grid-synchronization modeling and its stability analysis for multi-paralleled three-phase inverter systems[C]//2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), March 17-21, 2013. Long Beach, CA, USA. IEEE, 2013: 439-446. [20] GIERSCHNER M, KNAAK H J, ECKEL H G. Fixed-reference-frame-control: a novel robust control concept for grid side inverters in HVDC connected weak offshore grids[C]//2014 16th European Conference on Power Electronics and Applications, August 26-28, 2014. Lappeenranta, Finland. IEEE, 2014: 1-7. [21] PRIGNITZ C, ECKEL H G, ACHENBACH S, et al. FixReF: a control strategy for offshore wind farms with different wind turbine types and diode rectifier HVDC transmission[C]//2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), June 27-30, 2016. Vancouver, BC, Canada. IEEE, 2016: 1-7. [22] LI J, LI D J, HONG L, et al. A novel power-flow balance LVRT control strategy for low-speed direct-drive PMSG wind generation system[C]//IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, November 7-10, 2010. Glendale, AZ, USA. IEEE, 2010: 748-753. [23] MANEIRO J, TENNAKOON S, BARKER C, et al. Energy diverting converter topologies for HVDC transmission systems[C]//2013 15th European Conference on Power Electronics and Applications (EPE), September 2-6, 2013. Lille, France. IEEE, 2013: 1-10.
|