[1] CHEN Z, GUERRERO J M, BLAABJERG F. A review of the state of the art of power electronics for wind turbines[J]. IEEE Transactions on Power Electronics, 2009, 24(8):1859-1875. [2] XIONG Y L, CHENG X, SHEN Z J. Prognostic and warning system for power-electronic modules in electric, hybrid electric, and fuel-cell vehicles[J]. IEEE Transactions Industrial Electronics, 2008, 55(6):2268-2276. [3] WANG H, LISERRE M, BLAABJERG F. Toward reliable power electronics-challenges, design tools and opportunities[J]. IEEE Industrial Electronics Magazine, 2013, 7(2):17-26. [4] TOUBOUL D, FORO L, WROBEL F. On the reliability assessment of trench fieldstop IGBT under atmospheric neutron spectrum[J]. Microelectronics Reliability, 2012, 52(1):124-129. [5] CIAPPA M, MALBERTI P. Plastic-strain of aluminum interconnections during pulsed operation of IGBT multichip modules[J]. Quality and Reliability Engineering International, 1996, 12:297-303. [6] MALBERTI P, CIAPPA M, CATTOMIO R. A power-cycling induced failure mechanism of IGBT multichip modules[C]//International Symposium for Testing and Failure Analysis, 1995, 21:163−168. [7] MITIC G, BEINERT R, KLOFAC P. Reliability of AlN substrates and their solder joints in IGBT power modules[J]. Microelectronics Reliability, 1999, 39(6/7):1159-1164. [8] KHATIR Z, OUSTEN J P, BADEL F. Degradation behavior of 600 V-200 A IGBT modules under power cycling and high temperature environment conditions[J]. Microelectronics Reliability, 2007, 47(9/11):1719-1724. [9] CZERNY B, LEDERER M, NAGL B. Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions[J]. Microelectronics Reliability, 2012, 52(9/10):2353-2357. [10] AYAGO J A, BRÜCKNER T, and BERNET S. How to select the system voltage of MV drives-A comparison of semiconductor expenses[J]. IEEE Transactions Industrial Electronics, 2008, 55(9):3381-3390. [11] TAKATA L. Destruction mechanism of PT and NPT-IGBTs in the short circuit operation-an estimation from the quasi-stationary simulations[C]//International Symposium on Power Semiconductor Devices conference, 2001:327−330. [12] ISHIKO M. Investigation of IGBT turn-on failure under high applied voltage operation[J]. Microelectronics Reliability, 2004, 44(9/11):1431-1436. [13] BENMANSOUR A. Failure mechanism of trench IGBT under short-circuit after turn-off[J]. Microelectronics Reliability, 2006, 46(9/11):1778-1783. [14] LOH W S. Wire bond reliability for power electronic modules-effect of bonding temperature, thermal, mechanical and multi-physics simulation experiments[J]. Microelectronics and Micro-systems, EuroSime, 2007:1-6. [15] ISHIKO M. Design concept for wire-bonding reliability improvement by optimizing position in power devices[J]. Microelectronics Journal, 2006, 37:262-268. [16] MEDJAHED H, VIDAL P, NOGAREDE B. Thermo-mechanical stress of bonded wires used in high power modules with alternating and direct current modes[J]. Microelectronics Reliability, 2012, 52(6):1099-1104. [17] BENMANSOUR A, AZZOPARDI S, MARTIN J C, et al. Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions[J]. Microelectronics Reliability, 2007, 47(9/11):1730-1734. [18] SADEGH M, MOSTAFA Z, SHAHRIYAR K. A series stacked IGBT switch with robustness against short-circuit fault for pulsed power applications[J]. IEEE Transactions on Power Electronics, 2018, 33(5):3779-3790. [19] SMET V, FOREST F, HUSELSTEIN J. Ageing and failure modes of IGBT modules in high-temperature power cycling[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10):4931-4941. [20] MARCO A, ABRAHAM C, DIDIER T. A failure-detection strategy for IGBT based on gate-voltage behavior applied to a motor drive system[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5):1625-1633. [21] SMET V, FOREST F, HUSELSTEIN J. Evaluation of Vce monitoring as a real-time method to estimate aging of bond wire-IGBT modules stressed by power cycling[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7):2760-2770. [22] PATIL N, DAS D, PECHT M. A prognostic approach for non-punch through and field stop IGBTs[J]. Microelectronics Reliability, 2012, 52(3):482-488. [23] YANG L, AGYAKWA P A, JOHNSON C M. Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules[J]. IEEE Transactions on Device Materials Reliability, 2013, 13(1):9-17. [24] SCHEUERMANN U, SCHMIDT R. A new lifetime model for advanced power modules with sintered chips and optimized Al wire bonds[C]//PCIM Europe, 2013:810-817. [25] LIU B, LIU D, TANG Y. The investigation on the lifetime prediction model of IGBT module[J]. Energy Procedia, 2011, 12:394-402. [26] BRYANT A T, MAWBY P A, PALMER P R, et al. Exploration of power device reliability using compact device models and fast electro-thermal simulation[J]. IEEE Transactions on Industrial Applications, 2008, 44(3):894-903. [27] JASON M, ANDERSON, ROBERT W C. On-line condition monitoring for MOSFET and IGBT switches in digitally controlled drives[J]. Energy Conversion Congress & Exposition, 2011:3920-3927. [28] PEDERSEN K B, PEDERSEN K. Dynamic modeling method of electro-thermo-mechanical degradation in IGBT modules[J]. IEEE Transactions on Power Electronics, 2016, 31(2):975-986. [29] LORENZO C, RAMCHANDRA M K, AMIR S B, et al. Mission-profile-based lifetime prediction for a SiC mosfet power module using a multi-step condition mapping simulation strategy[J]. IEEE Transactions on Power Electronics, 2019, 34(10):9698-9708. [30] MA K, LISERRE M, BLAABJERG F. Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter[J]. IEEE Transactions on Power Electronics, 2015, 30(2):590-602. [31] BAKER N, MUNK NIELSEN S, IANNUZZO F, et al. Online junction temperature measurement using peak gate current[C]//IEEE Applied Power Electronics Conference and Exposition (APEC), 2015:1270−1275. [32] ZHOU S, ZHOU L, SUN P. Monitoring potential defects in an IGBT module based on dynamic changes of the gate current[J]. IEEE Transactions on Power Electronics, 2013, 28(3):1479-1487. [33] MA K, BLAABJERG F, LISERRE M. Electro-thermal model of power semiconductors dedicated for both case and junction temperature estimation[C]//PCIM Europe, 2013:1042-1046. [34] FLELSCHERA A S, CHANG L B C, JOHNSON. The effect of die attach voiding on the thermal resistance of chip level packages[J]. Microelectronics Reliability, 2006, 46(6):794-804. [35] OTIABKC R S, BHATTI R E. Thermal effect of die-attach voids location and style on performance of chip level package[C]//3rd IEEE International Conference on Adaptive Science and Technology (ICAST), 2011:231−236. [36] 肖飞, 罗毅飞, 刘宾礼, 等. 焊料层空洞对IGBT器件热稳定性的影响[J]. 高电压技术, 2018, 44(5):1499-1506 XIAO Fei, LUO Yifei, LIU Binli, et al. Influence of voids in solder layer on the temperature stability of IGBTs[J]. High Voltage Engineering, 2018, 44(5):1499-1506 [37] LEFRANC P, PLANSON D, MOREL H. Analysis of the dynamic avalanche of punch through insulated gate bipolar transistor (PT-IGBT)[J]. Solid-State Electronics, 2009, 53:944-954. [38] MILADY S, SILBER D, PFIRSCH F, et al. Simulation studies and modeling short circuit current oscillations in IGBTs[C]//Proceeding of ISPSD, 2009:37−40. [39] HU S, ZHU Y, DUAN Y. An impact analysis of gate resistance on static and dynamic dissipation of IGBT modules[C]//Proceeding of ICECC, 2011:715-718. [40] BARARIA I, BARRENA J, ABAD G. An experimentally verified active gate control method for the series connection of IGBT/diodes[J]. IEEE Transactions on Power Electronics, 2012, 27(2):1025-1038. [41] WANG Z, SHI X, TOLBERT L M. A di/dt feedback-based active gate driver for smart switching and fast overcurrent protection of IGBT modules[J]. IEEE Transactions Power Electronics, 2014, 29(7):3720-3732. [42] IM W S, KIM J M, LEE D C, et al. Diagnosis and fault tolerant control of 3-phase AC-DC PWM converter systems[J]. IEEE Transactions on Industry Applications, 2013, 49(4):1539-1547. [43] TANG Y, WANG B, CHEN M. Simulation model and parameter extraction of Field-Stop (FS) IGBT[J]. Microelectronics Reliability, 2012, 52(12):2920-2931. [44] LUO Y, XIAO F, WANG B. A voltage model of PIN diodes at reverse recovery under short-time freewheeling[J]. IEEE Transactions on Power Elections, 2017, 32(1):142-149. [45] 刘宾礼, 刘德志, 唐勇, 等. 基于IGBT栅极疲劳机理的阈值电压可靠性模型研究[J]. 电力电子技术, 2015, 49(4):36-38 LIU Binli, LIU Dezhi, TANG Yong, et al. Reliability model research of threshold voltage based on the gate fatigue mechanism of IGBT[J]. Power Electronics, 2015, 49(4):36-38 [46] 普靖, 罗毅飞, 肖飞, 等. 针对高压IGBT的改进瞬态模型[J]. 高电压技术, 2018, 44(2):448-455 PU Jing, LUO Yifei, XIAO Fei, et al. Improved transient model for high voltage IGBT[J]. High Voltage Engineering, 2018, 44(2):448-455
|