中国电力 ›› 2025, Vol. 58 ›› Issue (5): 144-151.DOI: 10.11930/j.issn.1004-9649.202410061
收稿日期:
2024-10-28
发布日期:
2025-05-30
出版日期:
2025-05-28
作者简介:
基金资助:
ZHANG Ruixiao1,2(), LIANG Li1, WANG Dingmei1
Received:
2024-10-28
Online:
2025-05-30
Published:
2025-05-28
Supported by:
摘要:
随着新能源大规模接入电网,场站频率响应性能愈发关键,其快速频率响应能力成为保障电网稳定的重要支撑。针对这一挑战,提出一种适用于新能源场站快速频率响应技术的高效测试设计方案。首先,分析锁相环(phase locked loop,PLL)固有缺陷及并网条件下频率响应指标特性;其次,提出固定轨迹控制策略,实现频率扰动工况下的功率波动抑制;接着,构建快速频率响应测试系统架构,支持电压馈出与自动发电控制(automatic generation control,AGC)命令反馈,实现动态响应测试;最后,开发的工程应用系统可适配多种测试环境,验证方案不仅符合相关标准要求,而且提高了准确性与效率。
张睿骁, 梁利, 王定美. 新能源场站快速频率响应分析与高效测试装置设计[J]. 中国电力, 2025, 58(5): 144-151.
ZHANG Ruixiao, LIANG Li, WANG Dingmei. Fast Frequency Response Analysis and Efficient Test Device Design of New Energy Station[J]. Electric Power, 2025, 58(5): 144-151.
场站 | 调频控制偏差/% | |||||||
光伏场站 | ≤3 | ≤5 | ≤15 | ±1 | ||||
风电场站 | ≤3 | ≤12 | ≤15 | ±1 |
表 1 快速频率响应性能指标
Table 1 Fast frequency response performance indicators
场站 | 调频控制偏差/% | |||||||
光伏场站 | ≤3 | ≤5 | ≤15 | ±1 | ||||
风电场站 | ≤3 | ≤12 | ≤15 | ±1 |
序号 | 频率扰 动类型 | 阶跃目标 频率/Hz | 响应滞后 时间/s | 响应时 间/s | 调节时 间/s | 控制偏 差/% | 测试 结论 | |||||||
1 | 20%~30%Pn 阶跃上扰 | 50.21 | 0.440 | 0.540 | 0.540 | –0.131 | 合格 | |||||||
2 | 0.477 | 0.577 | 0.577 | –0.004 | ||||||||||
3 | 50%~90%Pn 阶跃上扰 | 0.474 | 0.574 | 0.574 | –0.217 | |||||||||
4 | 0.496 | 0.596 | 0.596 | –0.155 | ||||||||||
5 | 20%~30%Pn 阶跃下扰 | 49.79 | 0.619 | 0.719 | 0.719 | 0.089 | ||||||||
6 | 0.450 | 0.550 | 0.550 | 0.029 | ||||||||||
7 | 50%~90%Pn 阶跃下扰 | 0.463 | 0.563 | 0.563 | –0.059 | |||||||||
8 | 0.455 | 0.555 | 0.555 | –0.107 |
表 2 频率阶跃扰动测试结果
Table 2 Frequency step disturbance test results
序号 | 频率扰 动类型 | 阶跃目标 频率/Hz | 响应滞后 时间/s | 响应时 间/s | 调节时 间/s | 控制偏 差/% | 测试 结论 | |||||||
1 | 20%~30%Pn 阶跃上扰 | 50.21 | 0.440 | 0.540 | 0.540 | –0.131 | 合格 | |||||||
2 | 0.477 | 0.577 | 0.577 | –0.004 | ||||||||||
3 | 50%~90%Pn 阶跃上扰 | 0.474 | 0.574 | 0.574 | –0.217 | |||||||||
4 | 0.496 | 0.596 | 0.596 | –0.155 | ||||||||||
5 | 20%~30%Pn 阶跃下扰 | 49.79 | 0.619 | 0.719 | 0.719 | 0.089 | ||||||||
6 | 0.450 | 0.550 | 0.550 | 0.029 | ||||||||||
7 | 50%~90%Pn 阶跃下扰 | 0.463 | 0.563 | 0.563 | –0.059 | |||||||||
8 | 0.455 | 0.555 | 0.555 | –0.107 |
序 号 | 频率扰 动类型 | 阶跃目标 频率/Hz | 响应滞后 时间/s | 响应时 间/s | 调节时 间/s | 控制偏 差/% | 测试 结论 | |||||||
1 | 20%~30%Pn | 50.21→ 49.79 | 0.480 | 0.740 | 0.740 | 0.261 | 合格 | |||||||
0.517 | 0.767 | 0.767 | 0.244 | |||||||||||
2 | 50%~90%Pn | 0.504 | 0.842 | 0.842 | 0.217 | |||||||||
0.526 | 0.846 | 0.846 | 0.175 | |||||||||||
3 | 20%~30%Pn | 49.79→ 50.21 | 0.719 | 0.756 | 0.756 | 0.293 | ||||||||
0.640 | 0.750 | 0.750 | 0.345 | |||||||||||
4 | 50%~90%Pn | 0.563 | 0.753 | 0.753 | 0.450 | |||||||||
0.580 | 0.724 | 0.724 | 0.310 |
表 3 频率连续波动阶跃扰动测试结果
Table 3 Test results of frequency continuous fluctuation step disturbance
序 号 | 频率扰 动类型 | 阶跃目标 频率/Hz | 响应滞后 时间/s | 响应时 间/s | 调节时 间/s | 控制偏 差/% | 测试 结论 | |||||||
1 | 20%~30%Pn | 50.21→ 49.79 | 0.480 | 0.740 | 0.740 | 0.261 | 合格 | |||||||
0.517 | 0.767 | 0.767 | 0.244 | |||||||||||
2 | 50%~90%Pn | 0.504 | 0.842 | 0.842 | 0.217 | |||||||||
0.526 | 0.846 | 0.846 | 0.175 | |||||||||||
3 | 20%~30%Pn | 49.79→ 50.21 | 0.719 | 0.756 | 0.756 | 0.293 | ||||||||
0.640 | 0.750 | 0.750 | 0.345 | |||||||||||
4 | 50%~90%Pn | 0.563 | 0.753 | 0.753 | 0.450 | |||||||||
0.580 | 0.724 | 0.724 | 0.310 |
序号 | 频率扰动类型 | 一次调频响 应合格率/% | 一次调频积分 电量合格率/% | 一次调频 合格率/% | ||||
1 | 20%~30%Pn阶跃上扰1 | 101.207 | 99.471 | 100.339 | ||||
2 | 50%~90%Pn阶跃上扰2 | 98.042 | 103.508 | 100.775 | ||||
3 | 20%~30%Pn阶跃下扰1 | 103.727 | 107.927 | 105.827 | ||||
4 | 50%~90%Pn阶跃下扰2 | 105.877 | 105.039 | 105.458 |
表 4 模拟实际频率扰动测试结果
Table 4 Simulated actual frequency disturbance test results
序号 | 频率扰动类型 | 一次调频响 应合格率/% | 一次调频积分 电量合格率/% | 一次调频 合格率/% | ||||
1 | 20%~30%Pn阶跃上扰1 | 101.207 | 99.471 | 100.339 | ||||
2 | 50%~90%Pn阶跃上扰2 | 98.042 | 103.508 | 100.775 | ||||
3 | 20%~30%Pn阶跃下扰1 | 103.727 | 107.927 | 105.827 | ||||
4 | 50%~90%Pn阶跃下扰2 | 105.877 | 105.039 | 105.458 |
序号 | 频率扰动类型 | 阶跃目标 频率/Hz | 响应滞后 时间/s | 响应时 间/s | 调节时 间/s | 控制偏 差/% | 测试 结论 | |||||||
1 | 20%~30%Pn 阶跃上扰 | 50.1 | 0.250 | 0.370 | 0.370 | –0.060 | 合格 | |||||||
2 | 0.380 | 0.480 | 0.480 | –0.140 | ||||||||||
3 | 50%~90%Pn 阶跃上扰 | 0.445 | 0.545 | 0.545 | –0.170 | |||||||||
4 | 0.576 | 0.684 | 0.684 | –0.140 | ||||||||||
5 | 20%~30%Pn 阶跃下扰 | 49.9 | 0.579 | 0.684 | 0.684 | 0.150 | ||||||||
6 | 0.450 | 0.550 | 0.550 | 0.159 | ||||||||||
7 | 50%~90%Pn 阶跃下扰 | 0.340 | 0.450 | 0.450 | –0.120 | |||||||||
8 | 0.468 | 0.580 | 0.580 | –0.078 |
表 5 工程实际频率阶跃扰动结果
Table 5 Results of actual frequency step disturbance in engineering
序号 | 频率扰动类型 | 阶跃目标 频率/Hz | 响应滞后 时间/s | 响应时 间/s | 调节时 间/s | 控制偏 差/% | 测试 结论 | |||||||
1 | 20%~30%Pn 阶跃上扰 | 50.1 | 0.250 | 0.370 | 0.370 | –0.060 | 合格 | |||||||
2 | 0.380 | 0.480 | 0.480 | –0.140 | ||||||||||
3 | 50%~90%Pn 阶跃上扰 | 0.445 | 0.545 | 0.545 | –0.170 | |||||||||
4 | 0.576 | 0.684 | 0.684 | –0.140 | ||||||||||
5 | 20%~30%Pn 阶跃下扰 | 49.9 | 0.579 | 0.684 | 0.684 | 0.150 | ||||||||
6 | 0.450 | 0.550 | 0.550 | 0.159 | ||||||||||
7 | 50%~90%Pn 阶跃下扰 | 0.340 | 0.450 | 0.450 | –0.120 | |||||||||
8 | 0.468 | 0.580 | 0.580 | –0.078 |
1 | 郑国光. 支撑“双碳” 目标实现的问题辨识与关键举措研究[J]. 中国电力, 2023, 56 (11): 1- 8. |
ZHENG Guoguang. Problem identification and key measures to support the achievement of carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (11): 1- 8. | |
2 | 周勤勇, 李根兆, 秦晓辉, 等. 能源革命下的电力系统范式转换分析[J]. 中国电力, 2024, 57 (3): 1- 11. |
ZHOU Qinyong, LI Genzhao, QIN Xiaohui, et al. Analysis of power system paradigm shift under energy revolution[J]. Electric Power, 2024, 57 (3): 1- 11. | |
3 |
赵长伟, 王慧, 顾志成, 等. 分散式风储系统频率和电压调节能力评估关键技术[J]. 综合智慧能源, 2024, 46 (6): 78- 87.
DOI |
ZHAO Changwei, WANG Hui, GU Zhicheng, et al. Key technologies of the evaluation on distributed wind-storage systems’ frequency and voltage regulation capacities[J]. Integrated Intelligent Energy, 2024, 46 (6): 78- 87.
DOI |
|
4 | 江桂芬, 徐加银, 刘浩, 等. 考虑风机惯量支撑及有功备用的新能源电力系统优化调度模型[J]. 浙江电力, 2024, 43 (5): 53- 62. |
JIANG Guifen, XU Jiayin, LIU Hao, et al. An optimal scheduling model for new energy power systems considering wind turbine inertia support and active power reserve[J]. Zhejiang Electric Power, 2024, 43 (5): 53- 62. | |
5 | 袁典, 金旭, 钱涛, 等. 主动配电网优化调度场景下的变频空调负荷聚合外特性研究[J]. 东北电力大学学报, 2024, 44 (1): 109- 119. |
YUAN Dian, JIN Xu, QIAN Tao, et al. Application of inverter air conditioner aggregation external characterization study in active distribution grid optimization scheduling[J]. Journal of Northeast Electric Power University, 2024, 44 (1): 109- 119. | |
6 | 陈龙翔, 曹际储, 于思奇, 等. 风机惯量支撑对电网频率跌落特性的影响[J]. 浙江电力, 2023, 42 (4): 27- 35. |
CHEN Longxiang, CAO Jichu, YU Siqi, et al. Influence of wind turbine inertia support on frequency drop characteristics of power grid[J]. Zhejiang Electric Power, 2023, 42 (4): 27- 35. | |
7 | 马成廉, 赵宇, 宋萌清, 等. 基于新能源发电品质量化与负荷时序匹配的功率品质划分模型研究[J]. 东北电力大学学报, 2024, 44 (2): 42- 50, 78. |
MA Chenglian, ZHAO Yu, SONG Mengqing, et al. Research on power quality segmentation model based on new EnergyPower generation quality quantification and load timing matching[J]. Journal of Northeast Electric Power University, 2024, 44 (2): 42- 50, 78. | |
8 | 张平, 李静宇, 任正, 等. 面向新能源基地的频率动态响应模型研究[J]. 内蒙古电力技术, 2024, 42 (4): 66- 72. |
ZHANG Ping, LI Jingyu, REN Zheng, et al. Research on frequency dynamic response model for new energy bases[J]. Inner Mongolia Electric Power, 2024, 42 (4): 66- 72. | |
9 | 杨彪, 颜伟, 莫静山. 考虑源荷功率随机性和相关性的主导节点选择与无功分区方法[J]. 电力系统自动化, 2021, 45 (11): 61- 67. |
YANG Biao, YAN Wei, MO Jingshan. Pilot-bus selection and network partitioning method considering randomness and correlation of source-load power[J]. Automation of Electric Power Systems, 2021, 45 (11): 61- 67. | |
10 | 岳振亚, 许英豪, 冯昊, 等. 基于光伏电站的快速频率响应技术的仿真与研究[J]. 农村电气化, 2021, (10): 48- 49. |
YUE Zhenya, XU Yinghao, FENG Hao, et al. Simulation and research related to quick frequency response technology based on photovoltaic electric power stations[J]. Rural Electrification, 2021, (10): 48- 49. | |
11 | 马晓伟, 徐海超, 刘鑫, 等. 适用于西北送端大电网新能源场站快速频率响应功能的入网试验方法[J]. 电网技术, 2020, 44 (4): 1384- 1391. |
MA Xiaowei, XU Haichao, LIU Xin, et al. A test method for fast frequency response function of renewable energy stations in northwest power grid[J]. Power System Technology, 2020, 44 (4): 1384- 1391. | |
12 | 欧习国, 孙宝会, 史宣亮, 等. 电网新要求下快速频率响应现状及优化[J]. 船舶工程, 2023, 45 (S2): 123- 129. |
OU Xiguo, SUN Baohui, SHI Xunliang, et al. Current situation and optimization scheme of rapid frequency response under new requirements of power grid[J]. Ship Engineering, 2023, 45 (S2): 123- 129. | |
13 | 张军, 王瑾然, 章叶青. 新能源快速频率响应在新能源场站的应用方案研究及工程实践[J]. 湖北电力, 2021, 45 (4): 86- 93. |
ZHANG Jun, WANG Jinran, ZHANG Yeqing. Application scheme research and engineering practice of new energy fast frequency response in renewable energy station[J]. Hubei Electric Power, 2021, 45 (4): 86- 93. | |
14 | 王小源. 适应快速调频需求的风电频率响应策略[D]. 济南: 山东大学, 2021. |
WANG Xiaoyuan. Wind power system frequency regulation strategies adapted to demands of fast frequency regulation[D]. Jinan: Shandong University, 2021. | |
15 |
徐荣鹏, 王阳, 王超, 等. 双馈感应式风电场电网友好型功率控制系统技术改造[J]. 广东电力, 2024, 37 (6): 43- 52.
DOI |
XU Rongpeng, WANG Yang, WANG Chao, et al. Technical transformation of grid friendly power control system for doubly-fed induction wind farm[J]. Guangdong Electric Power, 2024, 37 (6): 43- 52.
DOI |
|
16 |
郑博文, 杨朋威, 姜传霏, 等. 考虑频率约束的新能源电网极限渗透率估计方法[J]. 广东电力, 2024, 37 (10): 66- 74.
DOI |
ZHENG Bowen, YANG Pengwei, JIANG Chuanfei, et al. Estimation of extreme penetration rate of new energy grid considering frequency constraints[J]. Guangdong Electric Power, 2024, 37 (10): 66- 74.
DOI |
|
17 | 张海锋, 李德鑫, 李秀杰, 等. 大规模风电接入对电网动态频率响应时空分布的影响[J]. 东北电力大学学报, 2022, 42 (5): 74- 82. |
ZHANG Haifeng, LI Dexin, LI Xiujie, et al. Impact of large-scale wind power integration on space-time distribution of power system dynamic frequency response[J]. Journal of Northeast Electric Power University, 2022, 42 (5): 74- 82. | |
18 | 刘櫂芮, 贾祺, 严干贵, 等. 基于惯量响应的双馈风电机组动态协调机理研究[J]. 中国电力, 2022, 55 (7): 142- 151. |
LIU Zhaorui, JIA Qi, YAN Gangui, et al. Dynamic coordination mechanism of DFIGs based on inertia response[J]. Electric Power, 2022, 55 (7): 142- 151. | |
19 | 杨力, 朱晓纲, 李勇, 等. 规模化储能虚拟同步控制策略及其惯量分析[J]. 电力科学与技术学报, 2024, 39 (2): 190- 197. |
YANG Li, ZHU Xiaogang, LI Yong, et al. Virtual synchronous control strategy and inertia analysis of large-scale energy storage[J]. Journal of Electric Power Science and Technology, 2024, 39 (2): 190- 197. |
[1] | 王瑞欣, 孙吉广, 刘艳, 程伦, 许婷, 孙广辉. 计及新能源场站黑启动时空支撑能力的分区目标网架优化[J]. 中国电力, 2024, 57(10): 143-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||