中国电力 ›› 2025, Vol. 58 ›› Issue (12): 165-177.DOI: 10.11930/j.issn.1004-9649.202508007

• 新型电网 • 上一篇    

融合切比雪夫距离和修正余弦相似度算法的保护二次回路测量误差识别方法

王海明1(), 王剑锋1(), 王仲源2, 姜佳利2, 翁汉琍2   

  1. 1. 国网河南省电力公司鹤壁供电公司,河南 鹤壁 458030
    2. 三峡大学 电气与新能源学院,湖北 宜昌 443002
  • 收稿日期:2025-08-12 修回日期:2025-10-28 发布日期:2025-12-27 出版日期:2025-12-28
  • 作者简介:
    王海明(1973),男,高级工程师(教授级),从事电力系统及其自动化研究,E-mail:2278156713@qq.com
    王剑锋(1991),男,通信作者,硕士,高级工程师,从事电力系统及其自动化方向研究,E-mail:xufengassy@foxmail.com
  • 基金资助:
    国网河南省电力公司科技项目(521720250004)。

Measurement Error Identification of Protection Secondary Circuit by Fusing Chebyshev Distance and Modified Cosine Similarity Algorithms

WANG Haiming1(), WANG Jianfeng1(), WANG Zhongyuan2, JIANG Jiali2, WENG Hanli2   

  1. 1. State Grid Henan Electric Power Company Hebi Power Supply Co., Ltd., Hebi 458030, China
    2. College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China
  • Received:2025-08-12 Revised:2025-10-28 Online:2025-12-27 Published:2025-12-28
  • Supported by:
    This work is supported by State Grid Henan Electric Power Company Science and Technology Program (No.521720250004).

摘要:

准确识别保护装置二次回路测量误差,对提高保护可靠性、保障电力系统稳定运行至关重要。为此,提出一种采用熵值权重法融合切比雪夫距离与修正余弦相似度算法(entropy-based weight-Chebyshev distance and modified cosine similarity,EBW-CDMCS)的方法对保护装置二次回路测量误差进行准确识别。首先,为了确保数据分析的准确性和一致性,对测得的2组数据进行标准化预处理。通过切比雪夫距离和修正余弦相似度算法分别得到2组采样点数据之间的距离值,表征数据的离散性。然后,利用熵值权重法计算2组距离值的权重,融合得到EBW-CDMCS距离指标。最后,通过对正常工况下的二次回路测量电流数据进行分析,设定合适的阈值,将计算得到的EBM-CDMCS距离指数与阈值进行比较,识别二次回路中可能存在的测量误差。基于PSCAD搭建220kV变电站模型,仿真结果验证了所提方法的有效性和准确性。

关键词: 测量误差识别, 切比雪夫距离, 修正余弦相似度, 熵值权重法, 保护装置二次回路

Abstract:

Correctly identifying the measurement error of the protection secondary circuit is crucial to improving protection reliability and ensuring stable operation of the power system.Therefore, a method using the entropy weight-based fusion of Chebyshev distance and modified cosine similarity algorithm (EBW-CDMCS) is proposed to accurately identify measurement errors of the protection secondary circuits. Firstly, in order to ensure the accuracy and consistency of data analysis, two sets of measured data undergo standardized preprocessing, and the distance values between the two sets of sampled data are obtained using the Chebyshev distance and the modified cosine similarity algorithm, respectively, to characterize the dispersion of the data. Then, the entropy-based weight method is used to calculate the weights of the two sets of distance values, which are then fused to obtain the EBW-CDMCS distance index. Finally, by analyzing the measured current data of the secondary circuit under normal operating conditions, an appropriate threshold is set. The calculated EBW-CDMCS distance index is compared with this threshold to identify potential measurement errors in the secondary circuit. A 220kV substation model was built based on PSCAD, and simulation results verified the effectiveness and accuracy of the proposed method.

Key words: measurement error identification, Chebyshev distance, modified cosine similarity, entropy-based weight, protection secondary circuit


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?