中国电力 ›› 2025, Vol. 58 ›› Issue (11): 214-224.DOI: 10.11930/j.issn.1004-9649.202503025
• 新型电网 • 上一篇
冉宇进1,2(
), 彭佳1,2, 田小林1,2, 马磊3, 山强3,4, 杨绪飞3(
), 张伟3
收稿日期:2025-03-10
修回日期:2025-08-25
发布日期:2025-12-01
出版日期:2025-11-28
作者简介:基金资助:
RAN Yujin1,2(
), PENG Jia1,2, TIAN Xiaolin1,2, MA Lei3, SHAN Qiang3,4, YANG Xufei3(
), ZHANG Wei3
Received:2025-03-10
Revised:2025-08-25
Online:2025-12-01
Published:2025-11-28
Supported by:摘要:
针对地源热泵系统在长周期供暖过程中地温逐年下降,耦合太阳能跨季节蓄热导致全年能效降低的难题,提出了一种新型运行模式——“先蓄热后供热”模式,以提升耦合供暖系统的整体能效。基于温室供暖实验数据,采用TRNSYS软件构建仿真模型,分析了无蓄热、后蓄热和先蓄热3种模式下的地温变化特性和供暖能效。该“先蓄热后供热”模式通过供暖前的太阳能跨季节蓄热,实现太阳能与浅层地热能的高效耦合,在改善地温失衡的同时,显著提升供暖能效,并在20年运行周期内保持稳定。相较于“先供暖后蓄热”模式,该模式的全年能效提升4.4%~4.2%,20年累计节电约1.07×104 kW·h,年均节电534 kW·h,直接节省运行能耗成本4.2%,有效降低了系统能耗、提高了供暖经济性。
冉宇进, 彭佳, 田小林, 马磊, 山强, 杨绪飞, 张伟. 基于太阳能跨季节蓄热的地源热泵供暖运行模式优化[J]. 中国电力, 2025, 58(11): 214-224.
RAN Yujin, PENG Jia, TIAN Xiaolin, MA Lei, SHAN Qiang, YANG Xufei, ZHANG Wei. Optimization of Heating Operating Mode for Ground Source Heat Pump Coupled with Seasonal Solar Heat Storage[J]. Electric Power, 2025, 58(11): 214-224.
| 朝向 | 面积/m2 | 主要材质 | 厚度/mm | 导热系数/ (W·(m·K)–1) | ||||
| 南墙+北墙 | 64.00 | 中空玻璃 | 5+6+5 | 4.0 | ||||
| 东墙+西墙 | 98.00 | 中空玻璃 | 5+6+5 | 4.0 | ||||
| 顶部 | 125.22 | 钢化玻璃 | 5 | 6.4 |
表 1 温室玻璃维护结构主要参数
Table 1 Main parameters of the greenhouse envelope
| 朝向 | 面积/m2 | 主要材质 | 厚度/mm | 导热系数/ (W·(m·K)–1) | ||||
| 南墙+北墙 | 64.00 | 中空玻璃 | 5+6+5 | 4.0 | ||||
| 东墙+西墙 | 98.00 | 中空玻璃 | 5+6+5 | 4.0 | ||||
| 顶部 | 125.22 | 钢化玻璃 | 5 | 6.4 |
| 数据名称 | 仿真值 | 实验值[ | 偏差 | |||
| 热泵供热量/(kW·h) | 0.2% | |||||
| 热泵取热量/(kW·h) | 2.7% | |||||
| 供暖总能耗/(kW·h) | 0.9% | |||||
| 供暖后地温/℃ | 13.79 | 13.75 | 0.04 | |||
| 供暖季地温下降量/℃ | 0.92 | 0.89 | –0.04 |
表 2 第1供暖季仿真值和实验值对比
Table 2 Comparison of simulated and experimental values for the first heating season
| 数据名称 | 仿真值 | 实验值[ | 偏差 | |||
| 热泵供热量/(kW·h) | 0.2% | |||||
| 热泵取热量/(kW·h) | 2.7% | |||||
| 供暖总能耗/(kW·h) | 0.9% | |||||
| 供暖后地温/℃ | 13.79 | 13.75 | 0.04 | |||
| 供暖季地温下降量/℃ | 0.92 | 0.89 | –0.04 |
| 数据名称 | 仿真值 | 实验值[ | 偏差 | |||
| 土壤蓄热量/(kW·h) | 0.6% | |||||
| 集热能耗/(kW·h) | 349 | 364 | –4.1% | |||
| 蓄热能耗/(kW·h) | 141 | 144 | –2.1% | |||
| 跨季蓄热总能耗/(kW·h) | 490 | 508 | –3.5% | |||
| 典型日集热效率/% | 38.41 | 35.46 | 2.95 | |||
| 蓄热后地温/℃ | 14.35 | 14.31 | 0.04 | |||
| 蓄热季地温上升量/℃ | 1.00 | 0.96 | 0.04 |
表 3 太阳能跨季节蓄热仿真值和实验值对比
Table 3 Comparison of simulated and experimental values for the SSHS
| 数据名称 | 仿真值 | 实验值[ | 偏差 | |||
| 土壤蓄热量/(kW·h) | 0.6% | |||||
| 集热能耗/(kW·h) | 349 | 364 | –4.1% | |||
| 蓄热能耗/(kW·h) | 141 | 144 | –2.1% | |||
| 跨季蓄热总能耗/(kW·h) | 490 | 508 | –3.5% | |||
| 典型日集热效率/% | 38.41 | 35.46 | 2.95 | |||
| 蓄热后地温/℃ | 14.35 | 14.31 | 0.04 | |||
| 蓄热季地温上升量/℃ | 1.00 | 0.96 | 0.04 |
| 数据名称 | 仿真值 | 实验值[ | 偏差 | |||
| 热泵供热量/(kW·h) | 1.4% | |||||
| 热泵取热量/(kW·h) | 1.5% | |||||
| 热泵供暖总能耗/(kW·h) | –2.3% | |||||
| 太阳能直供热量/(kW·h) | –4.5% | |||||
| 太阳能直供能耗/(kW·h) | 462 | 458 | 0.77% | |||
| 供暖结束地温/℃ | 13.04 | 13.03 | 0.01 | |||
| 供暖前后地温下降量/℃ | 1.00 | 1.01 | –0.01 |
表 4 第2供暖季仿真值和实验值对比
Table 4 Comparison of simulated and experimental values for the second heating season
| 数据名称 | 仿真值 | 实验值[ | 偏差 | |||
| 热泵供热量/(kW·h) | 1.4% | |||||
| 热泵取热量/(kW·h) | 1.5% | |||||
| 热泵供暖总能耗/(kW·h) | –2.3% | |||||
| 太阳能直供热量/(kW·h) | –4.5% | |||||
| 太阳能直供能耗/(kW·h) | 462 | 458 | 0.77% | |||
| 供暖结束地温/℃ | 13.04 | 13.03 | 0.01 | |||
| 供暖前后地温下降量/℃ | 1.00 | 1.01 | –0.01 |
| 起始温度/ ℃ | 蓄热量/ (kW·h) | 蓄热子能耗/ (kW·h) | 集热子能耗/ (kW·h) | 蓄热总能耗/ (kW·h) | 蓄热 能效 | |||||
| 35 | 371 | 593 | 964 | 19.25 | ||||||
| 40 | 294 | 594 | 888 | 20.52 | ||||||
| 45 | 240 | 595 | 835 | 21.40 | ||||||
| 50 | 205 | 595 | 800 | 22.00 | ||||||
| 55 | 177 | 593 | 770 | 22.31 |
表 5 蓄热水箱上限温度的灵敏度分析
Table 5 Sensitivity analysis of the impact of maximum temperature of heat storage tank on SSHS performance
| 起始温度/ ℃ | 蓄热量/ (kW·h) | 蓄热子能耗/ (kW·h) | 集热子能耗/ (kW·h) | 蓄热总能耗/ (kW·h) | 蓄热 能效 | |||||
| 35 | 371 | 593 | 964 | 19.25 | ||||||
| 40 | 294 | 594 | 888 | 20.52 | ||||||
| 45 | 240 | 595 | 835 | 21.40 | ||||||
| 50 | 205 | 595 | 800 | 22.00 | ||||||
| 55 | 177 | 593 | 770 | 22.31 |
| 温度水平/℃ | 总天数 | 无供暖天数 | 有供暖天数 | 供暖占比/% | ||||
| 1~1.99 | 12 | 2 | 10 | 83.3 | ||||
| 2~2.99 | 8 | 1 | 7 | 87.5 | ||||
| 3~3.99 | 7 | 1 | 6 | 85.7 | ||||
| 4~4.99 | 9 | 2 | 7 | 77.8 | ||||
| 5~5.99 | 4 | 2 | 2 | 50.0 | ||||
| 6~6.99 | 8 | 1 | 7 | 87.5 | ||||
| 7~7.99 | 6 | 4 | 2 | 33.3 | ||||
| 8~8.99 | 6 | 4 | 2 | 33.3 |
表 6 供热天数统计(日均气温区间1 ℃~9 ℃)
Table 6 Statistics of heating days (daily average ambient temperature between 1 ℃ and 9 ℃)
| 温度水平/℃ | 总天数 | 无供暖天数 | 有供暖天数 | 供暖占比/% | ||||
| 1~1.99 | 12 | 2 | 10 | 83.3 | ||||
| 2~2.99 | 8 | 1 | 7 | 87.5 | ||||
| 3~3.99 | 7 | 1 | 6 | 85.7 | ||||
| 4~4.99 | 9 | 2 | 7 | 77.8 | ||||
| 5~5.99 | 4 | 2 | 2 | 50.0 | ||||
| 6~6.99 | 8 | 1 | 7 | 87.5 | ||||
| 7~7.99 | 6 | 4 | 2 | 33.3 | ||||
| 8~8.99 | 6 | 4 | 2 | 33.3 |
| 1 | 冀肖彤, 杨东俊, 方仍存, 等. “双碳” 目标下未来配电网构建思考与展望[J]. 电力建设, 2024, 45 (2): 37- 48. |
| JI Xiaotong, YANG Dongjun, FANG Rengcun, et al. Research and prospect of future distribution network construction under dual carbon target[J]. Electric Power Construction, 2024, 45 (2): 37- 48. | |
| 2 | 胡山鹰, 金涌, 张臻烨. 发展新质生产力, 实现碳中和[J]. 发电技术, 2025, 46 (1): 1- 8. |
| HU Shanying, JIN Yong, ZHANG Zhenye. Developing new quality productive forces to achieve carbon neutrality[J]. Power Generation Technology, 2025, 46 (1): 1- 8. | |
| 3 |
NKINYAM C M, UJAH C O, ASADU C O, et al. Exploring geothermal energy as a sustainable source of energy: a systemic review[J]. Unconventional Resources, 2025, 6, 100149.
DOI |
| 4 |
IDDIO E, WANG L, THOMAS Y, et al. Energy efficient operation and modeling for greenhouses: a literature review[J]. Renewable and Sustainable Energy Reviews, 2020, 117, 109480.
DOI |
| 5 |
SALEEM A, AMBREEN T, UGALDE-LOO C E. Energy storage-integrated ground-source heat pumps for heating and cooling applications: a systematic review[J]. Journal of Energy Storage, 2024, 102, 114097.
DOI |
| 6 | 王建华, 姚海清, 赵树旺, 等. 寒冷地区太阳能与地源热泵复合系统的应用分析[J]. 洁净与空调技术, 2022 (2): 84- 90. |
| WANG Jianhua, YAO Haiqing, ZHAO Shuwang, et al. The analysis for the application of solar energy and ground source heat pump combined system in cold area[J]. Contamination Control & Air-Conditioning Technology, 2022 (2): 84- 90. | |
| 7 | 唐磊, 谷一弘, 林波, 等. 严寒地区太阳能地源热泵耦合系统的设计与控制参数敏感性研究[J]. 建筑节能, 2024, 52 (7): 16- 21. |
| TANG Lei, GU Yihong, LIN Bo, et al. Design and sensitivity analysis of a solar assisted ground source heat pump system in severe cold area[J]. Building Energy Efficiency, 2024, 52 (7): 16- 21. | |
| 8 | 刘俊青, 吴晓轩, 刘彪, 等. 河北省某高校地源热泵系统地温场监测与分析[J]. 制冷与空调, 2024, 38 (3): 385- 393. |
| LIU Junqing, WU Xiaoxuan, LIU Biao, et al. Monitoring and analysis of ground temperature field in a ground source heat pump system of a university in Hebei Province[J]. Refrigeration & Air Conditioning, 2024, 38 (3): 385- 393. | |
| 9 |
彭佳, 唐忠伟, 田小林, 等. 贵州岩溶区一酒店地源热泵设计与制热运行分析[J]. 能源与节能, 2021 (3): 103- 104, 106.
DOI |
|
PENG Jia, TANG Zhongwei, TIAN Xiaolin, et al. Design and heating operation analysis of ground source heat pump for a hotel in Guizhou karst area[J]. Energy and Energy Conservation, 2021 (3): 103- 104, 106.
DOI |
|
| 10 |
YOU T, WU W, SHI W X, et al. An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions[J]. Applied Energy, 2016, 177, 515- 536.
DOI |
| 11 |
PENROD E B, PRASANNA K V. Design of a flat-plate collector for a solar earth heat pump[J]. Solar Energy, 1962, 6 (1): 9- 22.
DOI |
| 12 | OLSZEWSKI P. The possibility of using the ground as a seasonal heat storage: the numerical study[C]//ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, 2009: 437–441. |
| 13 |
LUNDH M, DALENBÄCK J O. Swedish solar heated residential area with seasonal storage in rock: initial evaluation[J]. Renewable Energy, 2008, 33 (4): 703- 711.
DOI |
| 14 | 金光, 陈仁磊, 郭少朋, 等. 严寒地区太阳能跨季蓄热热泵供暖性能实验研究[J]. 建筑科学, 2019, 35 (12): 33- 37, 125. |
| JIN Guang, CHEN Renlei, GUO Shaopeng, et al. Experimental study on heat pump heating performance of solar energy cross-season heat storage in severe cold areas[J]. Building Science, 2019, 35 (12): 33- 37, 125. | |
| 15 | 于长永. 太阳能跨季节蓄热土壤源热泵农业温室供暖系统研究[D]. 北京: 北京石油化工学院, 2020. |
| YU Changyong. Research on heating system of solar energy inter seasonal heat storage composite ground source heat pump for agricultural greenhouse[D]. Beijing: Beijing Institute of Petrochemical Technology, 2020. | |
| 16 |
YANG X F, SUN D L, LI J F, et al. Demonstration study on ground source heat pump heating system with solar thermal energy storage for greenhouse heating[J]. Journal of Energy Storage, 2022, 54, 105298.
DOI |
| 17 | 杨绪飞, 李飞, 孙东亮, 等. 温室太阳能跨季节蓄热-土壤源热泵耦合供暖运行特性[J]. 农业工程学报, 2024, 40 (19): 186- 196. |
| YANG Xufei, LI Fei, SUN Dongliang, et al. Operational characteristics of ground source heat pump coupled with seasonal solar thermal energy storage for greenhouse heating[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (19): 186- 196. | |
| 18 | 山强, 杨绪飞, 吴小华, 等. 太阳能跨季节蓄热增强土壤源热泵供暖系统建模与仿真研究[J]. 可再生能源, 2022, 40 (8): 1028- 1037. |
| SHAN Qiang, YANG Xufei, WU Xiaohua, et al. Research on modeling and simulation of ground source heat pump heating system with seasonal solar thermal energy storage enhancement[J]. Renewable Energy Resources, 2022, 40 (8): 1028- 1037. | |
| 19 | 山强. 基于TRNSYS的太阳能耦合地源热泵温室供暖系统仿真研究[D]. 北京: 北京工业大学, 2021. |
| SHAN Qiang. Research on greenhouse heating system of solar energy coupled ground source heat pump based on TRNSYS[D]. Beijing: Beijing University of Technology, 2021. | |
| 20 | 刘艳峰, 宋梦瑶, 周勇, 等. 分区串并联式太阳能-地源热泵跨季节蓄热组合系统性能研究[J]. 太阳能学报, 2021, 42 (12): 71- 79. |
| LIU Yanfeng, SONG Mengyao, ZHOU Yong, et al. Research on performance of subarea series-parallel solar assisted ground source heat pump system[J]. Acta Energiae Solaris Sinica, 2021, 42 (12): 71- 79. | |
| 21 | 刘仙萍, 雷豫豪, 田东, 等. 夏热冬冷地区太阳能光伏/光热-地源热泵联合供热系统运行性能模拟[J]. 中南大学学报(自然科学版), 2021, 52 (6): 1892- 1900. |
| LIU Xianping, LEI Yuhao, TIAN Dong, et al. Numerical simulation for performance of solar photovoltaic/thermal-ground source heat pump hybrid heating system in hot summer and cold winter zone[J]. Journal of Central South University (Science and Technology), 2021, 52 (6): 1892- 1900. | |
| 22 |
BERAGAMA JATHUNGE C, DWORKIN S B, WEMHÖNER C, et al. Performance investigation of a solar-assisted ground source heat pump system coupled with novel offset pipe energy piles and solar PVT collectors for cold climate applications[J]. Applied Thermal Engineering, 2025, 265, 125568.
DOI |
| 23 | 张文娟, 肖安汝, 弓建强, 等. 基于相变蓄热器的太阳能-地源热泵系统运行策略分析[J]. 制冷与空调, 2022, 22 (8): 78- 83. |
| ZHANG Wenjuan, XIAO Anru, GONG Jianqiang, et al. Operation strategy of solar-ground source heat pump system based on phase change regenerator[J]. Refrigeration and Air-Conditioning, 2022, 22 (8): 78- 83. | |
| 24 |
CHEN H F, LI X L, GAO J, et al. Comparative study on a solar-assisted ground source heat pump with CPC solar collector and phase change heat storage[J]. Renewable Energy, 2025, 239, 122065.
DOI |
| 25 |
LI H, NAGANO K, LAI Y X, et al. Evaluating the performance of a large borehole ground source heat pump for greenhouses in northern Japan[J]. Energy, 2013, 63, 387- 399.
DOI |
| 26 | 李政, 孙东亮, 王齐, 等. 基于跨季节土壤蓄热的超算中心余热和太阳能耦合供暖系统的仿真研究[J]. 太阳能学报, 2024, 45 (11): 384- 393. |
| LI Zheng, SUN Dongliang, WANG Qi, et al. Simulation research of coupled heating system utilizing waste heat from supercomeputer centers and solar energy based on seasonal soil heat storage[J]. Acta Energiae Solaris Sinica, 2024, 45 (11): 384- 393. | |
| 27 |
张亚磊, 崔海亭, 王超, 等. 基于TRNSYS的太阳能-地源热泵相变蓄热供暖系统对比分析研究[J]. 太阳能学报, 2025, 46 (1): 579- 586.
DOI |
|
ZHANG Yalei, CUI Haiting, WANG Chao, et al. Comparative analysis of solar-ground source heat pump phase change storage heating system based on trnsys[J]. Acta Energiae Solaris Sinica, 2025, 46 (1): 579- 586.
DOI |
|
| 28 |
胡田飞, 张峻洋, 郭磊, 等. 寒区路基地源热泵型供热装置运行特性及能效优化[J]. 可再生能源, 2022, 40 (10): 1325- 1333.
DOI |
|
HU Tianfei, ZHANG Junyang, GUO Lei, et al. Study on operation characteristics and energy efficiency optimization of ground-source heat pump heating device for embankment in cold regions[J]. Renewable Energy Resources, 2022, 40 (10): 1325- 1333.
DOI |
|
| 29 | 张苏苏. 冷热负荷非平衡地区土壤源热泵土壤热失衡问题的研究[D]. 扬州: 扬州大学, 2014. |
| ZHANG Susu. Study on underground thermal unbalance of ground coupled heat pump operated in districts with unbalanced cooling and heating load[D]. Yangzhou: Yangzhou University, 2014. |
| [1] | 宋卓然, 张燕妮, 王阳, 蒋海玮, 李嘉宇, 高洪超. 电力市场环境下分布式能源系统的多元运行模式与灵活性影响分析[J]. 中国电力, 2025, 58(11): 111-121. |
| [2] | 林其友, 蒋文良, 李媛媛, 汪冬冬, 牟思南. 基于母线电压分层的直流微网系统协调控制[J]. 中国电力, 2022, 55(2): 166-171,180. |
| [3] | 黎瑜春, 陈涛, 杨为民, 齐敏芳. 某600 MW超临界机组1号瓦振动异常分析与处理[J]. 中国电力, 2016, 49(11): 135-139. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编