[1] 邵瑰玮, 刘壮, 付晶, 等. 架空输电线路无人机巡检技术研究进展[J]. 高电压技术, 2020, 46(1): 14–22 SHAO Guiwei, LIU Zhuang, FU Jing, et al. Research progress in unmanned aerial vehicle inspection technology on overhead transmission lines[J]. High Voltage Engineering, 2020, 46(1): 14–22 [2] 邓恢平. 无人机在输电线路应用不断深化: 从辅助支撑作用到巡检主力军[N]. 中国电力报, 2021-12-23(8). [3] 黄郑, 王红星, 周航, 等. 基于混合算法的电力杆塔巡检实时航迹规划[J]. 中国电力, 2021, 54(11): 214–220 HUANG Zheng, WANG Hongxing, ZHOU Hang, et al. Real-time path planning for power tower inspection based on hybrid algorithm[J]. Electric Power, 2021, 54(11): 214–220 [4] 黄郑, 王永强, 王红星, 等. 基于云雾边异构协同的无人机智慧巡检系统[J]. 中国电力, 2020, 53(4): 161–168 HUANG Zheng, WANG Yongqiang, WANG Hongxing, et al. Design and application of UAV intelligent inspection system for transmission lines based on cloud and fog-edge heterogeneous collaborative computing architecture[J]. Electric Power, 2020, 53(4): 161–168 [5] 麻卫峰, 王成, 王金亮, 等. 基于激光点云的高压输电线覆冰厚度反演[J]. 电力系统保护与控制, 2021, 49(4): 89–95 MA Weifeng, WANG Cheng, WANG Jinliang, et al. Inversion of ice thickness for high voltage transmission line based on a LiDAR point cloud[J]. Power System Protection and Control, 2021, 49(4): 89–95 [6] 廖如超, 张英, 廖建东, 等. 基于语义信息分块的高像素导线缺陷目标识别[J]. 电力科学与技术学报, 2022, 37(3): 206–212 LIAO Ruchao, ZHANG Ying, LIAO Jiandong, et al. Research on defect target identification of high pixel wire image based on semantic information patching[J]. Journal of Electric Power Science and Technology, 2022, 37(3): 206–212 [7] 陈超强, 龚汉阳, 张帝, 等. 计及设备信息的配电设备多组巡检路径优化策略[J]. 中国电力, 2022, 55(7): 81–86 CHEN Chaoqiang, GONG Hanyang, ZHANG Di, et al. Optimization strategy of multi-group inspection path of distribution equipment with equipment information included[J]. Electric Power, 2022, 55(7): 81–86 [8] 周汝琴, 许志海, 彭炽刚, 等. 一种高压输电走廊机载激光点云分类方法[J]. 测绘科学, 2019, 44(3): 21–27, 33 ZHOU Ruqin, XU Zhihai, PENG Chigang, et al. A JointBoost-based classification method of high voltage transmission corridor from airborne LiDAR point cloud[J]. Science of Surveying and Mapping, 2019, 44(3): 21–27, 33 [9] 王和平, 陈世超, 胡伟, 等. 机载LiDAR输电线路杆塔快速定位方法研究[J]. 遥感技术与应用, 2021, 36(6): 1306–1310 WANG Heping, CHEN Shichao, HU Wei, et al. Study on power pylon fast positioning in transmission line from airborne LiDAR data[J]. Remote Sensing Technology and Application, 2021, 36(6): 1306–1310 [10] 徐梁刚, 虢韬, 吴绍华, 等. 基于点云数据特征的电力线快速提取和重建[J]. 激光技术, 2020, 44(2): 244–249 XU Lianggang, GUO Tao, WU Shaohua, et al. Fast extraction and reconstruction of power line based on point cloud data features[J]. Laser Technology, 2020, 44(2): 244–249 [11] 谭弘武, 王敬茹, 刘武能, 等. 机载LiDAR高压线塔点云自动化提取[J]. 遥感信息, 2021, 36(4): 7–11 TAN Hongwu, WANG Jingru, LIU Wuneng, et al. Automatic extraction of high voltage line tower point cloud from airborne LiDAR data[J]. Remote Sensing Information, 2021, 36(4): 7–11 [12] 朱依民, 田林亚, 毕继鑫, 等. 基于无人机机载LiDAR的电力线点云提取与重建[J]. 激光技术, 2021, 45(5): 554–560 ZHU Yimin, TIAN Linya, BI Jixin, et al. Power line point cloud extraction and reconstruction based on UAV-borne LiDAR[J]. Laser Technology, 2021, 45(5): 554–560 [13] 曾远, 陈亦, 姚攀, 等. 基于机载激光点云数据的输电线走廊自动识别技术[J]. 应用激光, 2021, 41(5): 1033–1038 ZENG Yuan, CHEN Yi, YAO Pan, et al. Automatic identification of transmission line corridors based on airbornelaser point cloud data[J]. Applied Laser, 2021, 41(5): 1033–1038 [14] 彭淑雯. 输电通道机载LiDAR点云分类方法研究[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2021. PENG Shuwen. Research on airborne LiDAR point cloud classification method for transmission line[D]. Beijing: Aerospace Information Research Institute, Chinese Academy of Sciences, 2021. [15] 陈正宇, 彭淑雯, 朱号东, 等. 基于样本加权PointNet++的输电通道点云分类研究[J]. 遥感技术与应用, 2021, 36(6): 1299–1305 CHEN Zhengyu, PENG Shuwen, ZHU Haodong, et al. LiDAR point cloud classification of transmission corridor based on sample weighted-PointNet[J]. Remote Sensing Technology and Application, 2021, 36(6): 1299–1305 [16] ELDAR Y, LINDENBAUM M, PORAT M, et al. The farthest point strategy for progressive image sampling[J]. IEEE Transactions on Image Processing, 1997, 6(9): 1305–1315. [17] ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 1534–1543. [18] DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 2432–2443. [19] HU Q Y, YANG B, XIE L H, et al. RandLA-net: efficient semantic segmentation of large-scale point clouds[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 11105–11114. [20] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 2261–2269. [21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 770–778. [22] THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South). IEEE, 2020: 6410–6419. [23] CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 77–85. [24] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31 st International Conference on Neural Information Processing Systems. Long Beach, California, USA. New York: ACM, 2017: 5105–5114. [25] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2018: 318–327.
|