[1] 黄新波, 张龙, 朱永灿, 等. 基于功角特性的干式空心电抗器匝间绝缘在线监测技术[J]. 电力自动化设备, 2019, 39(2): 143–148 HUANG Xinbo, ZHANG Long, ZHU Yongcan, et al. Online inter-turn insulation monitoring technology based on power angle characteristics for dry-type air-core reactor[J]. Electric Power Automation Equipment, 2019, 39(2): 143–148 [2] 周恺, 杨亮, 倪周, 等. 基于小波变换的XLPE电缆介质损耗在线监测研究[J]. 智慧电力, 2021, 49(6): 99–106 ZHOU Kai, YANG Liang, NI Zhou, et al. Online monitoring of XLPE cable dielectric loss based on wavelet transform[J]. Smart Power, 2021, 49(6): 99–106 [3] 刘浩然, 周凯, 王昱皓, 等. 基于电磁耦合注入的电力电缆局部缺陷在线定位方法[J]. 中国电力, 2021, 54(12): 177–185, 194 LIU Haoran, ZHOU Kai, WANG Yuhao, et al. An online location method for local defects in power cables based on electromagnetic coupling injection[J]. Electric Power, 2021, 54(12): 177–185, 194 [4] 高嵩, 陆倚鹏, 王笑倩, 等. 基于深度学习的悬式瓷绝缘子红外图像识别方法[J]. 电力科学与技术学报, 2020, 35(5): 119–125 GAO Song, LU Yipeng, WANG Xiaoqian, et al. Infrared image recognition method of porcelain disc-suspended insulators based on deep learning technology[J]. Journal of Electric Power Science and Technology, 2020, 35(5): 119–125 [5] 陈一悰, 刘坤雄, 张小庆, 等. 基于电容电流的谐波电压在线监测系统研制[J]. 智慧电力, 2021, 49(6): 67–74 CHEN Yicong, LIU Kunxiong, ZHANG Xiaoqing, et al. Development of voltage harmonics online measurement system based on capacitor current[J]. Smart Power, 2021, 49(6): 67–74 [6] 郑明忠, 彭志强, 卜强生, 等. 基于统一信息模型的时间同步在线监测技术[J]. 电力系统保护与控制, 2020, 48(15): 149–155 ZHENG Mingzhong, PENG Zhiqiang, BU Qiangsheng, et al. Time synchronization online monitoring technology based on a unified information mode[J]. Power System Protection and Control, 2020, 48(15): 149–155 [7] 张言苍. 智能变电站网络采样同步新技术[J]. 电力自动化设备, 2015, 35(8): 143–147,155 ZHANG Yancang. Network sampling synchronization method for smart substation[J]. Electric Power Automation Equipment, 2015, 35(8): 143–147,155 [8] 杨志宏, 周斌, 张海滨, 等. 智能变电站自动化系统新方案的探讨[J]. 电力系统自动化, 2016, 40(14): 1–7 YANG Zhihong, ZHOU Bin, ZHANG Haibin, et al. Discussion on novel scheme of smart substation automation system[J]. Automation of Electric Power Systems, 2016, 40(14): 1–7 [9] 叶远波, 孙月琴, 黄太贵, 等. 智能变电站继电保护二次回路在线监测与故障诊断技术[J]. 电力系统保护与控制, 2016, 44(20): 148–153 YE Yuanbo, SUN Yueqin, HUANG Taigui, et al. Online state detection and fault diagnosis technology of relay protection secondary circuits in smart substation[J]. Power System Protection and Control, 2016, 44(20): 148–153 [10] 陈志刚, 熊慕文, 刘东超, 等. 智能变电站时间同步与时间同步监测集成装置的研制及应用[J]. 电力自动化设备, 2021, 41(2): 213–217,224 CHEN Zhigang, XIONG Muwen, LIU Dongchao, et al. Development and application of device integrating time synchronization and time synchronization monitoring in smart substations[J]. Electric Power Automation Equipment, 2021, 41(2): 213–217,224 [11] 罗凌璐, 彭奇, 王德辉, 等. 智能变电站过程层网络监控方法[J]. 电力系统自动化, 2018, 42(11): 151–156 LUO Linglu, PENG Qi, WANG Dehui, et al. Monitoring method of process level network in smart substation[J]. Automation of Electric Power Systems, 2018, 42(11): 151–156 [12] DAMIÃO L, GUIMARÃES J, FERRAZ G, et al. Online monitoring of partial discharges in power transformers using capacitive coupling in the tap of condenser bushings[J]. Energies, 2020, 13(17): 4351. [13] 雷民, 汪泉, 付济良, 等. 金属氧化物避雷器监测装置现场校准技术研究[J]. 高压电器, 2017, 53(12): 93–98,105 LEI Min, WANG Quan, FU Jiliang, et al. On-site calibration technology of MOA monitoring devices[J]. High Voltage Apparatus, 2017, 53(12): 93–98,105 [14] 姚晓通, 王记荣, 蒋占军. 无线智能型避雷器在线监测装置的研究[J]. 高压电器, 2016, 52(11): 95–101 YAO Xiaotong, WANG Jirong, JIANG Zhanjun. Design of a wireless intelligent device for metal oxide arrestor on-line monitoring[J]. High Voltage Apparatus, 2016, 52(11): 95–101 [15] 左迎芝, 曹洪亮, 韩通, 等. 基于粒子群算法的金属氧化物避雷器老化监测研究[J]. 高压电器, 2016, 52(11): 113–118 ZUO Yingzhi, CAO Hongliang, HAN Tong, et al. On-line aging monitoring of metal oxide arrester using particle swarm optimization[J]. High Voltage Apparatus, 2016, 52(11): 113–118 [16] 魏新劳, 朱博, 聂洪岩, 等. 干式空心电抗器匝间绝缘故障位置与电气参数之间关系[J]. 电机与控制学报, 2020, 24(4): 71–79 WEI Xinlao, ZHU Bo, NIE Hongyan, et al. Relationship between electrical parameters and turn-to-turn insulation fault position of dry-type air-core reactor[J]. Electric Machines and Control, 2020, 24(4): 71–79 [17] PAPP K, SHARP M R, PEELO D F. High voltage dry-type air-core shunt reactors[J]. E & I Elektrotechnik und Informationstechnik, 2014, 131(8): 349–354. [18] 李文杰, 许国龙, 邵三保, 等. 高电压大容量干式空心电抗器匝间短路故障在线监测方法探析[J]. 电工技术, 2020(4): 75–76,79 LI Wenjie, XU Guolong, SHAO Sanbao, et al. Analysis of on-line monitoring method for interturn short circuit fault of high voltage and large capacity dry-type air core reactor[J]. Electric Engineering, 2020(4): 75–76,79 [19] 赵春明, 王永红, 敖明, 等. 匝间短路干式空心并联电抗器电气参数变化[J]. 变压器, 2019, 56(3): 31–36 ZHAO Chunming, WANG Yonghong, AO Ming, et al. Electric parameter variation of dry-type air-core shunt reactor with interturn short-circuit fault[J]. Transformer, 2019, 56(3): 31–36 [20] GUO H, CROSSLEY P. Design of a time synchronization system based on GPS and IEEE 1588 for transmission substations[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 2091–2100. [21] 李博, 方彤. 北斗卫星导航系统(BDS)在智能电网的应用与展望[J]. 中国电力, 2020, 53(8): 107–116 LI Bo, FANG Tong. Application and prospect of BeiDou navigation satellite system(BDS) in smart grid[J]. Electric Power, 2020, 53(8): 107–116 [22] PAN Z P, CHAI H Z, YANG K F, et al. Fast computation method of real-time precise satellite clock errors for combined BDS/GPS[C]//China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume III, 2016: 99–110. [23] 贾磊, 崔永俊, 杨兵, 等. 基于FPGA的IRIG-B(AC)时间码解码器的设计[J]. 电子器件, 2016, 39(2): 370–373 JIA Lei, CUI Yongjun, YANG Bing, et al. Design of FPGA-based IR IG-B(AC)time code decoder[J]. Chinese Journal of Electron Devices, 2016, 39(2): 370–373 [24] 李兴建, 笃峻, 于哲, 等. 合并单元时钟同步测试装置的研制及应用[J]. 电力自动化设备, 2017, 37(12): 218–222 LI Xingjian, DU Jun, YU Zhe, et al. Development and application of clock synchronization tester for MU[J]. Electric Power Automation Equipment, 2017, 37(12): 218–222 [25] 于大洋, 张聪聪, 王磊, 等. 变电站工频磁场干扰对泄漏电流传感器准确度影响研究[J]. 高压电器, 2021, 57(6): 107–114 YU Dayang, ZHANG Congcong, WANG Lei, et al. Study on the influence of power frequency magnetic field interference in substation on the accuracy of leakage current sensor[J]. High Voltage Apparatus, 2021, 57(6): 107–114
|