[1] 张军, 浦天宇. 多层次电压暂降评价方法研究[J]. 电力工程技术, 2018, 37(6): 49–54 ZHANG Jun, PU Tianyu. Multi-level evaluation method of voltage sag[J]. Electric Power Engineering Technology, 2018, 37(6): 49–54 [2] 杨桢, 马钰超, 李丽, 等. 基于HHT和GA-BP的电压暂降源定位方法[J]. 中国电力, 2022, 55(3): 97–104 YANG Zhen, MA Yuchao, LI Li, et al. A novel method for voltage sag source location based on HHT and GA-BP[J]. Electric Power, 2022, 55(3): 97–104 [3] HE H Y, ZHANG W H, WANG Y, et al. A sensitive industrial process model for financial losses assessment due to voltage sag and short interruptions[J]. IEEE Transactions on Power Delivery, 2021, 36(3): 1293–1301. [4] WANG Y, YANG Y X, XIAO X Y, et al. Configuration strategy of shared mitigation equipment for voltage sag considering the demands of users[J]. IET Generation, Transmission & Distribution, 2020, 14(25): 6338–6347. [5] 张宸宇, 史明明, 范忠, 等. 电压暂降事件分类及短路类型识别研究[J]. 电力工程技术, 2018, 37(2): 102–107,113 ZHANG Chenyu, SHI Mingming, FAN Zhong, et al. Research on voltage sag event classification and short circuit type identification[J]. Electric Power Engineering Technology, 2018, 37(2): 102–107,113 [6] 李春海, 李华强, 刘勃江. 基于过程免疫不确定性的工业用户电压暂降经济损失风险评估[J]. 电力自动化设备, 2016, 36(12): 136–142 LI Chunhai, LI Huaqiang, LIU Bojiang. Risk assessment based on process immunity uncertainty for industrial customers' financial losses due to voltage sags[J]. Electric Power Automation Equipment, 2016, 36(12): 136–142 [7] 张逸, 李为明, 林芳, 等. 基于电气特性–物理属性的工业用户电压暂降缓减策略[J]. 中国电机工程学报, 2021, 41(2): 632–642 ZHANG Yi, LI Weiming, LIN Fang, et al. Voltage sag mitigation strategy for industrial users based on process electrical characteristics-physical attribute[J]. Proceedings of the CSEE, 2021, 41(2): 632–642 [8] 郑颖, 刘旭娜, 刘阳, 等. 基于过程免疫时间和可接受后果状态的优质园区供电质量等级划分[J]. 电网技术, 2014, 38(1): 211–216 ZHENG Ying, LIU Xuna, LIU Yang, et al. Classification of power supply quality levels for premium power park based on process immunity time and acceptable resulting status[J]. Power System Technology, 2014, 38(1): 211–216 [9] 郑志宇, 李雅倩, 谢雪景, 等. 基于全寿命周期成本的电压暂降治理设备综合配置规划[J]. 电力系统保护与控制, 2018, 46(18): 128–134 ZHENG Zhiyu, LI Yaqian, XIE Xuejing, et al. Allocation plan of voltage sags mitigation devices based on life cycle cost[J]. Power System Protection and Control, 2018, 46(18): 128–134 [10] 李文峰, 武玉丰, 白宏坤, 等. 基于电力增值服务的电压暂降治理模式研究[J]. 电测与仪表, 2019, 56(17): 36–41,52 LI Wenfeng, WU Yufeng, BAI Hongkun, et al. Research of voltage sags control mode based on power value-added services[J]. Electrical Measurement & Instrumentation, 2019, 56(17): 36–41,52 [11] 刘阳, 肖先勇, 刘旭娜, 等. 考虑用户定量需求的优质电力园区DVR优化配置[J]. 电网技术, 2015, 39(3): 823–828 LIU Yang, XIAO Xianyong, LIU Xuna, et al. Optimal configuration of DVR in premium power park considering customers' quantitative demand[J]. Power System Technology, 2015, 39(3): 823–828 [12] 张博, 唐钰政, 代双寅, 等. 供用电双方满意的电压暂降治理增值服务策略[J]. 中国电力, 2020, 53(11): 50–59 ZHANG Bo, TANG Yuzheng, DAI Shuangyin, et al. Value-added service strategy of voltage sag governance for mutual satisfaction of power supply companies and power users[J]. Electric Power, 2020, 53(11): 50–59 [13] 闫海鸥, 叶猛. 计及暂态电压质量服务的统一输电定价模型[J]. 华北电力大学学报(自然科学版), 2010, 37(2): 49–53 YAN Haiou, YE Meng. Uniform transmission pricing model considering transient voltage quality service[J]. Journal of North China Electric Power University (Natural Science Edition), 2010, 37(2): 49–53 [14] 王建勋, 张逸, 张嫣, 等. 面向现代工业园区的电压暂降综合防治方案[J]. 电力系统自动化, 2020, 44(14): 156–163 WANG Jianxun, ZHANG Yi, ZHANG Yan, et al. Comprehensive prevention and control scheme for voltage sag in modern industrial park[J]. Automation of Electric Power Systems, 2020, 44(14): 156–163 [15] 邵冠宇, 王慧芳, 何奔腾. 电网设备缺陷文本的质量评价与提升方法[J]. 电网技术, 2019, 43(4): 1472–1479 SHAO Guanyu, WANG Huifang, HE Benteng. Quality assessment and improvement method for power grid equipment defect text[J]. Power System Technology, 2019, 43(4): 1472–1479 [16] 马愿谦, 肖先勇, 汪颖, 等. 高端制造企业优质电力增溢价值及其量化方法[J]. 中国电机工程学报, 2015, 35(增刊1): 99–104 MA Yuanqian, XIAO Xianyong, WANG Ying, et al. Premium price valuation of premium power for high-end manufacturing enterprises[J]. Proceedings of the CSEE, 2015, 35(S1): 99–104 [17] 许旭锋, 黄民翔, 王婷婷, 等. 供电设备检修优化算法及其在地区电网中的应用[J]. 电网技术, 2009, 33(14): 31–35 XU Xufeng, HUANG Minxiang, WANG Tingting, et al. Optimization algorithm of power supply equipment maintenance scheduling and its application in regional power network[J]. Power System Technology, 2009, 33(14): 31–35 [18] 雷震, 郝雨辰, 朱月尧, 等. 基于主从博弈模型的电热联合市场节点能价计算方法[J]. 电力工程技术, 2021, 40(1): 50–57 LEI Zhen, HAO Yuchen, ZHU Yueyao, et al. Nodal energy price calculation based on Stackelberg game model in combined power and heat market[J]. Electric Power Engineering Technology, 2021, 40(1): 50–57 [19] 蒋贤强, 徐青山, 柳丹, 等. 含分布式电源的交直流配网双层规划研究[J]. 电力工程技术, 2018, 37(4): 27–32 JIANG Xianqiang, XU Qingshan, LIU Dan, et al. Two-layer model of AC/DC distribution network containing DGs[J]. Electric Power Engineering Technology, 2018, 37(4): 27–32 [20] 匡熠, 王秀丽, 王建学, 等. 基于stackelberg博弈的虚拟电厂能源共享机制[J]. 电网技术, 2020, 44(12): 4556–4564 KUANG Yi, WANG Xiuli, WANG Jianxue, et al. Virtual power plant energy sharing mechanism based on stackelberg game[J]. Power System Technology, 2020, 44(12): 4556–4564 [21] 杨炜晨, 苗世洪, 张世旭, 等. 交直流混合微电网群分布式自治经济控制策略[J]. 中国电机工程学报, 2021, 41(3): 857–868 YANG Weichen, MIAO Shihong, ZHANG Shixu, et al. Distributed autonomous economic control strategy for AC/DC hybrid microgrid cluster[J]. Proceedings of the CSEE, 2021, 41(3): 857–868 [22] 汪颖, 周杨, 莫文雄, 等. 设备电压暂降耐受能力测试技术分析与测试规范建议[J]. 电力自动化设备, 2020, 40(2): 196–206 WANG Ying, ZHOU Yang, MO Wenxiong, et al. Technical analysis and recommendation of test specification for equipment voltage sag tolerance test[J]. Electric Power Automation Equipment, 2020, 40(2): 196–206 [23] 汪伟, 常乾坤, 于希娟, 等. 考虑电压暂降耐受曲线不确定区域的设备故障概率评估[J]. 电力电容器与无功补偿, 2020, 41(6): 142–149 WANG Wei, CHANG Qiankun, YU Xijuan, et al. Probability assessment of equipment fault considering uncertainty region of tolerance curves for voltage sags[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(6): 142–149 [24] 何英杰, 支文浩, 张义坤, 等. 典型敏感设备电压暂降耐受能力自动测试系统研究[J]. 电网技术, 2022, 46(5): 1956–1964 HE Yingjie, ZHI Wenhao, ZHANG Yikun, et al. Research on automatic test system for voltage sag tolerance of typical sensitive equipment[J]. Power System Technology, 2022, 46(5): 1956–1964 [25] 李科, 何辉, 唐喆. 一种实现优质电力园区分级供电的协调控制策略[J]. 浙江电力, 2018, 37(4): 68–74 LI Ke, HE Hui, TANG Zhe. The coordinated control strategy for multiple power supply in premium power park[J]. Zhejiang Electric Power, 2018, 37(4): 68–74
|