[1] 代贤忠, 王阳, 白翠粉, 等. 智能电网功能形态升级需求分析框架与模糊综合评价[J]. 中国电力, 2017, 50(6):158-164 DAI Xianzhong, WANG Yang, BAI Cuifen, et al. Analysis framework and fuzzy comprehensive evaluation of smart grid function and form upgrade needs[J]. Electric Power, 2017, 50(6):158-164 [2] 曾鸣. 国家电网公司"三型两网"的战略内涵及实施问题[J]. 中国电力企业管理, 2019(4):54-56 [3] 黄晓莉, 李振杰, 张韬, 等. 新形势下能源发展需求与智能电网建设[J]. 中国电力, 2017, 50(9):25-30 HUANG Xiaoli, LI Zhenjie, ZHANG Tao, et al. Study on the energy development demand and smart grid construction under new situation[J]. Electric Power, 2017, 50(9):25-30 [4] 宋宗耘, 张健, 郑泽东, 等. 电力需求侧管理政策激励过程的动态演化博弈分析[J]. 中国电力, 2019, 52(10):54-64 SONG Zongyun, ZHANG Jian, ZHENG Zedong, et al. Power demand side management policy incentive process dynamic evolutionary game analysis[J]. Electric Power, 2019, 52(10):54-64 [5] 鲁卓欣, 徐潇源, 严正, 等. 不确定性环境下数据驱动的电力系统优化调度方法综述[J]. 电力系统自动化, 2020, 44(21):172-183 LU Zhuoxin, XU Xiaoyuan, YAN Zheng, et al. Overview on data-driven optimal scheduling methods of power system in uncertain environment[J]. Automation of Electric Power Systems, 2020, 44(21):172-183 [6] HART G W. Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80(12):1870-1891. [7] HART G W, BOULOUTAS A T. Correcting dependent errors in sequences generated by finite-state processes[J]. IEEE Transactions on Information Theory, 1993, 39(4):1249-1260. [8] 杨立余, 陈昊, 黎明, 等. 非侵入式电力负荷多目标分解框架[J]. 电力系统保护与控制, 2020, 48(6):100-107 YANG Liyu, CHEN Hao, LI Ming, et al. A framework for non-intrusive load monitoring using multi-objective evolutionary algorithms[J]. Power System Protection and Control, 2020, 48(6):100-107 [9] LIN Y H, TSAI M S. Non-intrusive load monitoring by novel neuro-fuzzy classification considering uncertainties[J]. IEEE Transactions on Smart Grid, 2014, 5(5):2376-2384. [10] 孙毅, 崔灿, 张璐, 等. 智能用电非侵入式负荷监测系统研究[J]. 电力科学与技术学报, 2019, 34(2):155-160 SUN Yi, CUI Can, ZHANG Lu, et al. Research on nonintrusive load monitoring system for global energy Internet[J]. Journal of Electric Power Science and Technology, 2019, 34(2):155-160 [11] 程江洲, 谢诗雨, 张赟宁, 等. 基于聚类加权随机森林的非侵入式负荷识别[J]. 智慧电力, 2020, 48(8):123-129 CHENG Jiangzhou, XIE Shiyu, ZHANG Yunning, et al. Non-invasive load identification based on clustering weighted random forest[J]. Smart Power, 2020, 48(8):123-129 [12] 李如意, 王晓换, 胡美璇, 等. RPROP神经网络在非侵入式负荷分解中的应用[J]. 电力系统保护与控制, 2016, 44(7):55-61 LI Ruyi, WANG Xiaohuan, HU Meixuan, et al. Application of RPROP neural network in nonintrusive load decomposition[J]. Power System Protection and Control, 2016, 44(7):55-61 [13] YANG H T, CHANG H H, LIN C L. Design a neural network for features selection in non-intrusive monitoring of industrial electrical loads[C]//2007 11th International Conference on Computer Supported Cooperative Work in Design. Melbourne, VIC, Australia. IEEE, 2007:1022-1027. [14] 李灿. 基于聚类分析的大工业用户负荷特征识别方法研究[D]. 北京:华北电力大学(北京), 2018. LI Can. Research on load characteristic identification method of large industrial users based on cluster analysis[D]. Beijing:North China Electric Power University, 2018. [15] 孙毅, 崔灿, 陆俊, 等. 基于差量特征提取与模糊聚类的非侵入式负荷监测方法[J]. 电力系统自动化, 2017, 41(4):86-91 SUN Yi, CUI Can, LU Jun, et al. Non-intrusive load monitoring method based on delta feature extraction and fuzzy clustering[J]. Automation of Electric Power Systems, 2017, 41(4):86-91 [16] 高浩瀚. 非侵入式负荷辨识的特征分析研究[D]. 济南:山东大学, 2019. GAO Haohan. Signature analysis of non-intrusive load identification[D]. Jinan:Shandong University, 2019. [17] 程祥, 李林芝, 吴浩, 等. 非侵入式负荷监测与分解研究综述[J]. 电网技术, 2016, 40(10):3108-3117 CHENG Xiang, LI Linzhi, WU Hao, et al. A survey of the research on non-intrusive load monitoring and disaggregation[J]. Power System Technology, 2016, 40(10):3108-3117 [18] 许月娟. 负荷投切行为的非侵入式监测与辨识[D]. 北京:华北电力大学, 2018. XU Yuejuan. Non-invasive monitoring and identification of loads switching behavior[D]. Beijing:North China Electric Power University, 2018. [19] 梁利利, 高楠, 李建军. 基于小波变换和均值滤波的图像去噪方法[J]. 计算机与数字工程, 2019, 47(5):1229-1232 LIANG Lili, GAO Nan, LI Jianjun. Image denoising method based on wavelet transform and mean filtering[J]. Computer & Digital Engineering, 2019, 47(5):1229-1232 [20] 牛卢璐, 贾宏杰. 一种适用于非侵入式负荷监测的暂态事件检测算法[J]. 电力系统自动化, 2011, 35(9):30-35 NIU Lulu, JIA Hongjie. Transient event detection algorithm for non-intrusive load monitoring[J]. Automation of Electric Power Systems, 2011, 35(9):30-35 [21] 杨俊闯, 赵超. k-means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23):7-14, 63 YANG Junchuang, ZHAO Chao. Survey on k-means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(23):7-14, 63 [22] 刘莉, 王刚, 翟登辉. k-means聚类算法在负荷曲线分类中的应用[J]. 电力系统保护与控制, 2011, 39(23):65-68, 73 LIU Li, WANG Gang, ZHAI Denghui. Application of k-means clustering algorithm in load curve classification[J]. Power System Protection and Control, 2011, 39(23):65-68, 73 [23] 李通. 基于聚类的神经网络模型[D]. 成都:西南交通大学, 2019. LI Tong. Neural network model based on clustering[D]. Chengdu:Southwest Jiaotong University, 2019. [24] 孟濬, 邓晓雨, 虞捷舟. 基于变量聚类的BP神经网络术后生存期预测模型[J]. 浙江大学学报(工学版), 2018, 52(12):2365-2371 MENG Jun, DENG Xiaoyu, YU Jiezhou. Postoperative survival prediction model of BP neural network with variable cluster[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(12):2365-2371 [25] 黎祚, 周步祥, 林楠等. 基于模糊聚类与改进BP算法的日负荷特性曲线分类与短期负荷预测[J]. 电力系统保护与控制, 2012, 40(3):56-60 LI Zuo, ZHOU Buxiang, LIN Nan, et al. Classification of daily load characteristics curve and forecasting of short-term load based on fuzzy clustering and improved BP algorithm[J]. Power System Protection and Control, 2012, 40(3):56-60
|