[1] 鲁刚. 中国能源互联网发展基本特征[J]. 中国电力, 2018, 51(8): 17-23 LU Gang. Basic characteristics of China's energy Internet development[J]. Electric Power, 2018, 51(8): 17-23 [2] 代红才, 张运洲, 李苏秀, 等. 中国能源高质量发展内涵与路径研究[J]. 中国电力, 2019, 52(6): 27-36 DAI Hongcai, ZHANG Yunzhou, LI Suxiu, et al. Study on the connotation and path of China’s high-quality energy development[J]. Electric Power, 2019, 52(6): 27-36 [3] 国家电网公司直流建设分公司. 高压直流输电系统成套标准化设计[M]. 北京: 中国电力出版社, 2012. [4] 丁扬, 石路. 高压直流输电系统成套标准化设计[M]. 北京: 中国电力出版社, 2012. [5] 徐政, 肖晃庆, 张哲任. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017. [6] 汤广福. 基于电压源换流器的高压直流输电技术[M]. 北京: 中国电力出版社, 2010. [7] 张劲松. 高压换流站交、直流合建主要技术原则[J]. 电力建设, 2009, 30(5): 21-24 ZHANG Jinsong. Main technical principles for combining HV AC and DC converter station construction[J]. Electric Power Construction, 2009, 30(5): 21-24 [8] 王赞, 詹银, 梅念, 等. 柔性直流换流站阀厅布置方案研究[J]. 高压电器, 2017, 53(1): 57-63 WANG Zan, ZHAN Yin, MEI Nian, et al. Research on valve hall layout for HVDC flexible converter station[J]. High Voltage Apparatus, 2017, 53(1): 57-63 [9] 刘泽洪, 郭贤珊, 乐波, 等. ±1 100 kV/12 000 MW特高压直流输电工程成套设计研究[J]. 电网技术, 2018, 42(4): 1023-1031 LIU Zehong, GUO Xianshan, YUE Bo, et al. System design of ±1 100 kV/12 000 MW UHVDC transmission project[J]. Power System Technology, 2018, 42(4): 1023-1031 [10] 王丽杰, 梁言桥, 杨金根, 等. 柔性直流背靠背换流站阀厅电气设备布置设计[J]. 电力勘测设计, 2019(7): 51-57 WANG Lijie, LIANG Yanqiao, YANG Jingen, et al. The layout design of valve hall electrical equipment in VSC-HVDC back-to-back converter station[J]. Electric Power Survey & Design, 2019(7): 51-57 [11] 邢毅, 孙帮新, 骆玲, 等. 高地震烈度地区特高压换流站阀厅电气布置及联接设计[J]. 南方电网技术, 2019, 13(1): 7-13 XING Yi, SUN Bangxin, LUO Ling, et al. Electric layout and connection design in valve hall of UHVDC converter station in high earthquake intensity area[J]. Southern Power System Technology, 2019, 13(1): 7-13 [12] 汤广福, 贺之渊, 庞辉. 柔性直流输电工程技术研究、应用及发展[J]. 电力系统自动化, 2013, 37(15): 3-14 TANG Guangfu, HE Zhiyuan, PANG Hui. Research, application and development of VSC-HVDC engineering technology[J]. Automation of Electric Power Systems, 2013, 37(15): 3-14 [13] 马为民, 吴方劼, 杨一鸣, 等. 柔性直流输电技术的现状及应用前景分析[J]. 高电压技术, 2014, 40(8): 2429-2439 MA Weimin, WU Fangjie, YANG Yiming, et al. Flexible HVDC Transmission technology’s today and tomorrow[J]. High Voltage Engineering, 2014, 40(8): 2429-2439 [14] 张钊瑞. ±800 kV特高压直流输电接地故障过电压的仿真与研究[D]. 南宁: 广西大学, 2017. ZHANG Zhaorui. Simulation and research on overvoltage of ±800 kV UHV DC transmission[D]. Nanning: Guangxi University, 2017. [15] 徐健涛, 徐光辉, 常林晶, 等. ±1 100 kV特高压换流站阀厅金具空气净距计算研究[J]. 高压电器, 2017, 53(8): 28-33 XU Jiantao, XU Guanghui, CHANG Linjing, et al. Calculation of air clearance in fittings of valve hall of ±1 100 kV UHVDC converter station[J]. High Voltage Apparatus, 2017, 53(8): 28-33 [16] 裴旵. 特高压直流输电系统接地故障过电压特性研究[D]. 南宁: 广西大学, 2016. PEI Chan. Research of overvoltage characteristic caused by ground fault in UHVDC transmission system[D]. Nanning: Guangxi University, 2016. [17] 陈锡磊, 周浩, 王东举, 等. g参数修正法用于浙西±800 kV换流站阀厅空气净距设计[J]. 高电压技术, 2011, 37(9): 2185-2189 CHEN Xilei, ZHOU Hao, WANG Dongju, et al. Air clearance design for valve hall of Zhexi ±800 kV UHVDC converter station using parameter g[J]. High Voltage Engineering, 2011, 37(9): 2185-2189 [18] 邓旭. 特高压直流及柔性直流输电系统换流站绝缘配合研究[D]. 杭州: 浙江大学, 2014. DENG Xu. Insulation coordination for converter stations of UHVDC and VSC-HVDC transmission system[D]. Hangzhou. Zhejiang University, 2014. [19] 马丽斌. 高海拔特高压直流换流站阀厅金具空气净距试验研究[D]. 北京: 华北电力大学(北京), 2017. MA Libin. The research for air gap of the valve hall of the high altitude extra-high voltage DC converter station[D]. Beijing: North China Electric Power University, 2017. [20] 马丽斌, 刘磊, 高超, 等. 2400 m海拔下换流站阀厅内金具空气间隙操作冲击电压放电特性[J]. 南方电网技术, 2016, 10(11): 9-15, 58 MA Libin, LIU Lei, GAO Chao, et al. Switching impulse flashover characteristics of air gap of electric power fittings in value hall at the altitude of 2400 m[J]. Southern Power System Technology, 2016, 10(11): 9-15, 58 [21] 周非凡. 换流站大尺寸电极放电特性及海拔校正研究[D]. 北京: 华北电力大学(北京), 2019. ZHOU Feifan. Study on discharge characteristics and altitude correction of large-scale electrode in converter station[D]. Beijing: North China Electric Power University, 2019. [22] 金颀, 杜志叶, 邱志斌, 等. 大直径屏蔽球电晕特性与起晕电压预测[J]. 高电压技术, 2019, 45(12): 4079-4087 JIN Qi, DU Zhiye, QIU Zhibin, et al. Corona characteristics of large-diameter shielding spheres and prediction method of corona onset voltages[J]. High Voltage Engineering, 2019, 45(12): 4079-4087 [23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 高电压试验技术第1部分: 一般定义及试验要求: GB 16927.1—2011[S]. 北京: 中国标准出版社, 2011. [24] 李晋. 大容量多端柔性直流系统换流站布置方案研究[D]. 北京: 华北电力大学(北京), 2017. LI Jin. Study on the optimization layout of high-capacity VSC-MTDC converter station[D]. Beijing: North China Electric Power University, 2017. [25] 顾群, 张咪, 张玉明, 等. ±800 kV换流站高端阀厅钢-钢筋混凝土抗震墙混合结构抗震性能分析[J]. 中国电力, 2016, 49(8): 36-40 GU Qun, ZHANG Mi, ZHANG Yuming, et al. Seismic performance analysis of steel-reinforced concrete combined shear wall structure of high voltage side valve hall in ±800 kV converter station[J]. Electric Power, 2016, 49(8): 36-40 [26] 张玉明, 应捷, 常伟, 等. 哈密南±800 kV换流站换流区域建构筑物结构设计[J]. 中国电力, 2014, 47(10): 7-14 ZHANG Yuming, YING Jie, CHANG Wei, et al. Structural design of buildings and structures on converter transformer area of ±800 kV converter station in south Hami[J]. Electric Power, 2014, 47(10): 7-14 [27] 刘杰, 汤广福, 查鲲鹏, 等. 特高压直流输电换流阀冲击暂态均压措施研究[J]. 中国电机工程学报, 2016, 36(7): 1828-1835 LIU Jie, TANG Guangfu, ZHA Kunpeng, et al. Research of the voltage balancing scheme of UHVDC converter valve in impulse transient[J]. Proceedings of the CSEE, 2016, 36(7): 1828-1835 [28] 杨媛, 杜晓磊, 付颖, 等. 特高压直流工程受端分层接入交流电网方式下阀厅概念设计[J]. 高电压技术, 2016, 42(7): 2224-2234 YANG Yuan, DU Xiaolei, FU Ying, et al. Valve hall layout design for the UHVDC project with its receiving end connecting to AC grid by way of hierarchical connection[J]. High Voltage Engineering, 2016, 42(7): 2224-2234
|