中国电力 ›› 2025, Vol. 58 ›› Issue (7): 137-146.DOI: 10.11930/j.issn.1004-9649.202503012
收稿日期:
2025-03-07
发布日期:
2025-07-30
出版日期:
2025-07-28
作者简介:
基金资助:
LIU Ren1(), ZENG Yu2(
), HU Anlong3(
), TANG Bo1,2(
)
Received:
2025-03-07
Online:
2025-07-30
Published:
2025-07-28
Supported by:
摘要:
微磁学Landau-Lifshitz-Gilbert(LLG)方程相比于传统Preisach、J-A等磁滞模型具有物理意义清晰、模拟精度高等优点,但由于计算量、存储空间等问题的限制,其难以应用于实际电工钢片的宏观静态磁滞模拟。首先根据电工钢片结构特征,基于代表性体积单元法(representative volume element,RVE)提出了LLG方程的几何模型离散方法,继而构造了毫米级范围内总吉布斯自由能中各能量项的简化表达式,并提出了相关参数的快速辨识方法,从而推导出一种用于电工钢片宏观静态磁滞模拟的简化LLG方程。最后基于该简化LLG方程模拟了产品级取向及无取向硅钢片样品在不同工况下的静态磁滞回线,发现其吻合度均较高,并在模拟精度上与广泛应用的Preisach、J-A磁滞模型进行对比,验证了所提模型及方法的优势。
刘任, 曾宇, 胡安龙, 唐波. 电工装备硅钢磁心静态磁滞改进模拟方法[J]. 中国电力, 2025, 58(7): 137-146.
LIU Ren, ZENG Yu, HU Anlong, TANG Bo. Modified Static Hysteresis Simulation Method for Electrical Equipment with Silicon Steel Core[J]. Electric Power, 2025, 58(7): 137-146.
类型 | 牌号 | 长度/ mm | 宽度/ mm | 厚度/ mm | 密度/ (kg·m–3) | |||||
取向硅钢样品 | 23QG100 | 300 | 30 | 0.23 | ||||||
无取向硅钢样品 | 35W233 | 300 | 30 | 0.35 |
表 1 取向及无取向硅钢片样品参数
Table 1 Parameters of oriented and non-oriented silicon steel samples
类型 | 牌号 | 长度/ mm | 宽度/ mm | 厚度/ mm | 密度/ (kg·m–3) | |||||
取向硅钢样品 | 23QG100 | 300 | 30 | 0.23 | ||||||
无取向硅钢样品 | 35W233 | 300 | 30 | 0.35 |
Ms/T | hZee/T | μani/(A·m–1) | b2/J | b4/J | b6/J | b8/J | b10/J | b12/J | ||||||||
1.52 | 2.58 | 93.53 | 26.6 | 116 | –625.9 | – | 866.7 |
表 2 无取向硅钢样品在高磁密区域(Bm=1.3~1.5 T)的简化LLG方程参数
Table 2 Parameters of the simplified LLG equation for the non-oriented silicon steel samples in high magnetic flux density regions (Bm=1.3~1.5 T)
Ms/T | hZee/T | μani/(A·m–1) | b2/J | b4/J | b6/J | b8/J | b10/J | b12/J | ||||||||
1.52 | 2.58 | 93.53 | 26.6 | 116 | –625.9 | – | 866.7 |
Ms/T | hZee/T | μani/(A·m–1) | b2/J | b4/J | b6/J | b8/J | b10/J | b12/J | ||||||||
1.82 | 3.17 | 28.33 | 31.8 | 32.9 | –125.7 | 281.3 | –337.4 | 185.6 |
表 3 取向硅钢样品在高磁密区域(Bm=1.2~1.8 T)的简化LLG方程参数
Table 3 Parameters of the simplified LLG equation for the grain oriented silicon steel samples in high magnetic flux density regions (Bm=1.2~1.8 T)
Ms/T | hZee/T | μani/(A·m–1) | b2/J | b4/J | b6/J | b8/J | b10/J | b12/J | ||||||||
1.82 | 3.17 | 28.33 | 31.8 | 32.9 | –125.7 | 281.3 | –337.4 | 185.6 |
参 数 | 取向硅钢片 | 无取向硅钢片 | ||
饱和磁化强度Ms/(A·m–1) | 1.21×106 | 1.45×106 | ||
形状参数a/(A·m–1) | 26.924 | 15.284 | ||
可逆磁化参数c |
表 4 取向及无取向硅钢样品J-A模型固定参数
Table 4 Fixed parameters of J-A models of the oriented and non-oriented silicon steel samples
参 数 | 取向硅钢片 | 无取向硅钢片 | ||
饱和磁化强度Ms/(A·m–1) | 1.21×106 | 1.45×106 | ||
形状参数a/(A·m–1) | 26.924 | 15.284 | ||
可逆磁化参数c |
图 6 基于简化LLG方程计算的无取向硅钢片静态磁滞回线与实测值对比
Fig.6 Comparison of static hysteresis loops calculated based on simplified LLG equation for non-oriented silicon steel wafers with measured values
图 7 基于简化LLG方程计算的取向硅钢片静态磁滞回线与实测值对比
Fig.7 Comparison of static hysteresis loops calculated based on simplified LLG equation for oriented silicon steel wafers with measured values
图 8 基于Preisach模型、J-A模型和简化LLG方程模拟的静态磁滞回线与相应实测磁滞回线
Fig.8 Simulated static hysteresis loops based on Preisach model, J-A model and simplified LLG equation respectively and the measured ones
磁密幅值Bm/T | 计算值Wi,calc/(J·m–3) | 实测值Wi,meas/(J·m–3) | 相对误差σ/% | |||
1.5 | 271.95 | 278.14 | 2.96 | |||
1.4 | 219.64 | 229.47 | 4.28 | |||
1.2 | 153.68 | 153.68 | 1.31 | |||
1.0 | 116.04 | 107.23 | 4.41 | |||
0.8 | 74.00 | 73.99 | 0.01 | |||
0.6 | 46.62 | 46.67 | 0.08 | |||
0.4 | 23.34 | 24.20 | 3.52 | |||
0.2 | 6.38 | 6.54 | 2.30 |
表 5 基于简化LLG方程模拟的无取向硅钢片样品静态磁滞损耗的仿真值与测量值
Table 5 Simulated and measured values of static hysteresis loss of unoriented silicon steel wafer samples simulated based on simplified LLG equations
磁密幅值Bm/T | 计算值Wi,calc/(J·m–3) | 实测值Wi,meas/(J·m–3) | 相对误差σ/% | |||
1.5 | 271.95 | 278.14 | 2.96 | |||
1.4 | 219.64 | 229.47 | 4.28 | |||
1.2 | 153.68 | 153.68 | 1.31 | |||
1.0 | 116.04 | 107.23 | 4.41 | |||
0.8 | 74.00 | 73.99 | 0.01 | |||
0.6 | 46.62 | 46.67 | 0.08 | |||
0.4 | 23.34 | 24.20 | 3.52 | |||
0.2 | 6.38 | 6.54 | 2.30 |
磁密幅值Bm/T | 计算值Wi,calc/(J·m–3) | 实测值Wi,meas/(J·m–3) | 相对误差σ/% | |||
1.8 | 138.46 | 150.25 | 7.84 | |||
1.7 | 86.75 | 98.18 | 11.88 | |||
1.5 | 47.87 | 55.42 | 13.62 | |||
1.3 | 37.51 | 34.91 | 10.78 | |||
1.1 | 26.63 | 26.38 | 0.95 | |||
0.9 | 16.46 | 17.32 | 4.96 | |||
0.7 | 10.58 | 10.31 | 2.66 | |||
0.5 | 5.35 | 4.94 | 8.41 | |||
0.3 | 2.29 | 1.87 | 18.33 |
表 6 基于简化LLG方程模拟的取向硅钢片样品静态磁滞损耗的仿真值与测量值
Table 6 Simulated and measured values of static hysteresis loss in samples of oriented silicon steel wafers simulated based on simplified LLG equations
磁密幅值Bm/T | 计算值Wi,calc/(J·m–3) | 实测值Wi,meas/(J·m–3) | 相对误差σ/% | |||
1.8 | 138.46 | 150.25 | 7.84 | |||
1.7 | 86.75 | 98.18 | 11.88 | |||
1.5 | 47.87 | 55.42 | 13.62 | |||
1.3 | 37.51 | 34.91 | 10.78 | |||
1.1 | 26.63 | 26.38 | 0.95 | |||
0.9 | 16.46 | 17.32 | 4.96 | |||
0.7 | 10.58 | 10.31 | 2.66 | |||
0.5 | 5.35 | 4.94 | 8.41 | |||
0.3 | 2.29 | 1.87 | 18.33 |
模型 | 平均相对误差/% | |
LLG方程 | 2.36 | |
Preisach模型 | 8.44 | |
J-A模型 | 9.57 |
表 7 基于Preisach、J-A模型与简化LLG方程模拟无取向硅钢样品静态磁滞回线的平均相对误差
Table 7 Mean relative errors of non-oriented silicon steel sample based on Preisach model, J-A model and simplified LLG equation
模型 | 平均相对误差/% | |
LLG方程 | 2.36 | |
Preisach模型 | 8.44 | |
J-A模型 | 9.57 |
模型 | 平均相对误差/% | |
LLG方程 | 8.82 | |
Preisach模型 | 12.51 | |
J-A模型 | 14.65 |
表 8 基于Preisach、J-A模型与简化LLG方程模拟取向硅钢样品静态磁滞回线的平均相对误差
Table 8 Mean relative errors of oriented silicon steel sample based on Preisach model, J-A model and simplified LLG equation
模型 | 平均相对误差/% | |
LLG方程 | 8.82 | |
Preisach模型 | 12.51 | |
J-A模型 | 14.65 |
1 | 赵小军, 张佳伟, 王浩名, 等. 电-磁-机耦合视域下考虑气隙影响的变压器铁心振动特性精细化模拟方法[J]. 电工技术学报, 2024, 39 (14): 4257- 4269. |
ZHAO Xiaojun, ZHANG Jiawei, WANG Haoming, et al. A refined simulation method for the vibration characteristics of transformer core considering the influence of air gap under the perspective of electro-magnetic-mechanical coupling[J]. Transactions of China Electrotechnical Society, 2024, 39 (14): 4257- 4269. | |
2 |
李伊玲, 李琳, 刘任. 机械应力作用下电工钢片静态磁滞特性模拟方法研究[J]. 中国电力, 2020, 53 (10): 10- 18.
DOI |
LI Yiling, LI Lin, LIU Ren. Modeling methods of static hysteresis characteristics of electrical steel sheets under stress[J]. Electric Power, 2020, 53 (10): 10- 18.
DOI |
|
3 | 王振, 张艳丽, 龚园, 等. 机械应力下无取向电工钢片磁致伸缩特性研究[J]. 电工技术学报, 2023, 38 (21): 5682- 5690. |
WANG Zhen, ZHANG Yanli, GONG Yuan, et al. Study on magnetostrictive properties of non-oriented electrical steel sheet under mechanical stress[J]. Transactions of China Electrotechnical Society, 2023, 38 (21): 5682- 5690. | |
4 | 罗智荣, 黄丰, 郭淳, 等. 基于多物理场仿真的油浸式变压器振动特性分析及影响因素研究[J]. 智慧电力, 2024, 52 (11): 48- 55. |
LUO Zhirong, HUANG Feng, GUO Chun, et al. Vibration characteristics analysis and influencing factors of oilimmersed transformer based on multi-physical field simulation[J]. Smart Power, 2024, 52 (11): 48- 55. | |
5 | 李峰, 孟圣坤, 陆飞, 等. 基于监督学习的直流偏磁特征分析及评价方法研究[J]. 智慧电力, 2023, 51 (8): 111- 118. |
LI Feng, MENG Shengkun, LU Fei, et al. Characteristic analysis and evaluation method of DC magnetic bias based on supervised learning[J]. Smart Power, 2023, 51 (8): 111- 118. | |
6 | 赵小军, 武欣怡, 章轩源, 等. 高频多谐波激励下计及趋肤效应的软磁带材磁滞及损耗特性预测[J]. 中国电机工程学报, 2024, 44 (22): 9039- 9048. |
ZHAO Xiaojun, WU Xinyi, ZHANG Xuanyuan, et al. Predicting hysteresis and loss characteristics of soft magnetic tape material considering skin effect under high frequency multi-harmonic magnetization[J]. Proceedings of the CSEE, 2024, 44 (22): 9039- 9048. | |
7 | 刘欢, 李永建, 张长庚, 等. 非正弦激励下纳米晶材料高频磁心损耗的计算方法改进与验证[J]. 电工技术学报, 2023, 38 (5): 1217- 1227. |
LIU Huan, LI Yongjian, ZHANG Changgeng, et al. Calculation and experimental verification of core loss in high frequency transformer under non-sinusoidal excitation[J]. Transactions of China Electrotechnical Society, 2023, 38 (5): 1217- 1227. | |
8 | 赵志刚, 毕紫莉. 正弦及谐波激励下铁磁材料损耗模型的改进和验证[J]. 中国电机工程学报, 2022, 42 (9): 3452- 3460. |
ZHAO Zhigang, BI Zili. Improvement and verification of ferromagnetic material loss model under sinusoidal and harmonic excitation[J]. Proceedings of the CSEE, 2022, 42 (9): 3452- 3460. | |
9 |
SAI RAM B, PAUL A K, KULKARNI S V. Soft magnetic materials and their applications in transformers[J]. Journal of Magnetism and Magnetic Materials, 2021, 537, 168210.
DOI |
10 | 刘洋, 巩学海, 陈新, 等. 0.10 mm与0.23 mm取向硅钢在不同运行工况下磁特性的测量与对比分析[J]. 中国电力, 2022, 55 (2): 181- 189. |
LIU Yang, GONG Xuehai, CHEN Xin, et al. Measurement and comparison of magnetic properties of 0.10 mm and 0.23 mm oriented silicon steel under different operating conditions[J]. Electric Power, 2022, 55 (2): 181- 189. | |
11 | 贲彤, 安妮, 陈龙, 等. 基于改进多尺度动态J-A模型的无取向硅钢磁致伸缩特性模拟[J]. 中国电机工程学报, 2025, 45 (11): 4514- 4526. |
BEN Tong, AN Ni, CHEN Long, et al. Simulation of magnetostrictive characteristics of non-oriented silicon steel based on improved multi-scale dynamic J-A model[J]. Proceedings of the CSEE, 2025, 45 (11): 4514- 4526. | |
12 |
李宜伦, 张异殊, 宋光. 基于改进鲸鱼算法的电流互感器J-A模型磁滞参数识别[J]. 中国电力, 2022, 55 (2): 190- 199.
DOI |
LI Yilun, ZHANG Yishu, SONG Guang. Hysteresis parameter identification of J-A model current transformer based on improved whale algorithm[J]. Electric Power, 2022, 55 (2): 190- 199.
DOI |
|
13 | 刘任, 杜莹雪, 李琳, 等. 解析正Preisach磁滞模型的推导与修正[J]. 中国电机工程学报, 2023, 43 (5): 2070- 2079. |
LIU Ren, DU Yingxue, LI Lin, et al. Derivation and modification of analytical forward preisach hysteresis model[J]. Proceedings of the CSEE, 2023, 43 (5): 2070- 2079. | |
14 |
胡蔡飞, 范学良, 童力, 等. 基于Jiles-Atherton逆模型的磁阀式可控电抗器铁心饱和度分析[J]. 中国电力, 2021, 54 (12): 38- 44.
DOI |
HU Caifei, FAN Xueliang, TONG Li, et al. Core saturation analysis of magnetic-valve controlled reactor based on Jiles-Atherton inverse model[J]. Electric Power, 2021, 54 (12): 38- 44.
DOI |
|
15 |
HAYASHI N, INOUE T, NAKATANI Y, et al. Direct solution of Landau-Lifshitz-Gilbert equation for domain walls in thin Permalloy films[J]. IEEE Transactions on Magnetics, 1988, 24 (6): 3111- 3113.
DOI |
16 |
DI FRATTA G, JÜNGEL A, PRAETORIUS D, et al. Spin-diffusion model for micromagnetics in the limit of long times[J]. Journal of Differential Equations, 2023, 343, 467- 494.
DOI |
17 |
BERTOTTI G. Connection between microstructure and magnetic properties of soft magnetic materials[J]. Journal of Magnetism and Magnetic Materials, 2008, 320 (20): 2436- 2442.
DOI |
18 | ANGIZI S, HE Z Z, CHEN A, et al. Hybrid spin-CMOS polymorphic logic gate with application in in-memory computing[J]. IEEE Transactions on Magnetics, 2020, 56 (2): 3400215. |
19 | 袁佳卉, 杨晓阔, 张斌, 等. 混合时钟驱动的自旋神经元器件激活特性和计算性能[J]. 物理学报, 2021, 70 (20): 317- 326. |
YUAN Jiahui, YANG Xiaokuo, ZHANG Bin, et al. Activation function and computing performance of spin neuron driven by magnetic field and strain[J]. Acta Physica Sinica, 2021, 70 (20): 317- 326. | |
20 | VAN DE WIELE B, DUPRÉ L, OLYSLAGER F. Influence of space discretization size in 3D micromagnetic modeling[J]. Physica B: Condensed Matter, 2008, 403 (2/3): 372- 375. |
21 |
STEPHENSON E, MARDER A. The effects of grain size on the core loss and permeability of motor lamination steel[J]. IEEE Transactions on Magnetics, 1986, 22 (2): 101- 106.
DOI |
22 |
CHENG L, WAGNER G J. A representative volume element network (RVE-net) for accelerating RVE analysis, microscale material identification, and defect characterization[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390, 114507.
DOI |
23 |
KURZKE M, MELCHER C, MOSER R. Vortex motion for the landau–Lifshitz–gilbert equation with spin-transfer torque[J]. SIAM Journal on Mathematical Analysis, 2011, 43 (3): 1099- 1121.
DOI |
24 |
LAKSHMANAN M. The fascinating world of the landau–Lifshitz–gilbert equation: an overview[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369 (1939): 1280- 1300.
DOI |
25 |
PAN H J, ZHANG Z H, XIE J X. The effects of recrystallization texture and grain size on magnetic properties of 6.5wt% Si electrical steel[J]. Journal of Magnetism and Magnetic Materials, 2016, 401, 625- 632.
DOI |
26 |
LEBECKI K M, DONAHUE M J, GUTOWSKI M W. Periodic boundary conditions for demagnetization interactions in micromagnetic simulations[J]. Journal of Physics D: Applied Physics, 2008, 41 (17): 175005.
DOI |
27 | 刘任, 顾朝阳, 孙江东, 等. Jiles-Atherton磁滞模型的改进与非正弦激励下软磁材料复杂磁滞准确模拟[J]. 中国电机工程学报, 2025, 45 (5): 2016- 2027. |
LIU Ren, GU Chaoyang, SUN Jiangdong, et al. Modified Jiles-Atherton hysteresis model and accurate simulation of complex hysteresis characteristics of soft magnetic materials under non-sinusoidal excitation[J]. Proceedings of the CSEE, 2025, 45 (5): 2016- 2027. | |
28 | 刘任, 杜莹雪, 李琳, 等. 解析逆Preisach磁滞模型[J]. 电工技术学报, 2023, 38 (10): 2567- 2576. |
LIU Ren, DU Yingxue, LI Lin, et al. Analytical inverse Preisach hysteresis model[J]. Transactions of China Electrotechnical Society, 2023, 38 (10): 2567- 2576. |
[1] | 邓凯, 李永建, 成昊, 巩学海, 杨富尧. 新型矢量磁滞模型的建模与验证[J]. 中国电力, 2020, 53(10): 26-33. |
[2] | 李伊玲, 李琳, 刘任. 机械应力作用下电工钢片静态磁滞特性模拟方法研究[J]. 中国电力, 2020, 53(10): 10-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||