中国电力 ›› 2025, Vol. 58 ›› Issue (7): 137-146.DOI: 10.11930/j.issn.1004-9649.202503012

• 新型电网 • 上一篇    下一篇

电工装备硅钢磁心静态磁滞改进模拟方法

刘任1(), 曾宇2(), 胡安龙3(), 唐波1,2()   

  1. 1. 湖北省输电线路工程技术研究中心(三峡大学),湖北 宜昌 443002
    2. 三峡大学 电气与新能源学院,湖北 宜昌 443002
    3. 国网甘肃省电力公司经济技术研究院,甘肃 兰州 730050
  • 收稿日期:2025-03-07 发布日期:2025-07-30 出版日期:2025-07-28
  • 作者简介:
    刘任(1990),男,通信作者,博士,讲师,从事电工装备电磁综合特性分析与优化设计,E-mail:liu_remail@sina.com
    曾宇(1999),女,硕士研究生,从事软磁材料磁滞与损耗建模,E-mail:zengyu9865@163.com
    胡安龙(1991),男,硕士,工程师,从事电力设备优化设计与电网规划研究,E-mail:505129963@qq.com
    唐波(1978),男,教授,博士生导师,从事超特高压输电技术与输变电系统电磁环境研究,E-mail:tangboemail@sina.com
  • 基金资助:
    国家自然科学基金资助项目(52407009);湖北省自然科学基金青年基金资助项目(2023AFB037)。

Modified Static Hysteresis Simulation Method for Electrical Equipment with Silicon Steel Core

LIU Ren1(), ZENG Yu2(), HU Anlong3(), TANG Bo1,2()   

  1. 1. Hubei Provincial Engineering Technology Research Center for Power Transmission Line (China Three Gorges University), Yichang 443002, China
    2. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
    3. State Grid Gansu Electric Power Company Economic and Technological Research Institute, Lanzhou 730050, China
  • Received:2025-03-07 Online:2025-07-30 Published:2025-07-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.52407009), Natural Science Foundation of Hubei Province Youth Science Fund Program (No.2023AFB037).

摘要:

微磁学Landau-Lifshitz-Gilbert(LLG)方程相比于传统Preisach、J-A等磁滞模型具有物理意义清晰、模拟精度高等优点,但由于计算量、存储空间等问题的限制,其难以应用于实际电工钢片的宏观静态磁滞模拟。首先根据电工钢片结构特征,基于代表性体积单元法(representative volume element,RVE)提出了LLG方程的几何模型离散方法,继而构造了毫米级范围内总吉布斯自由能中各能量项的简化表达式,并提出了相关参数的快速辨识方法,从而推导出一种用于电工钢片宏观静态磁滞模拟的简化LLG方程。最后基于该简化LLG方程模拟了产品级取向及无取向硅钢片样品在不同工况下的静态磁滞回线,发现其吻合度均较高,并在模拟精度上与广泛应用的Preisach、J-A磁滞模型进行对比,验证了所提模型及方法的优势。

关键词: 微磁学, LLG方程, 电工钢片, 代表性体积单元法, 静态磁滞

Abstract:

Compared to traditional hysteresis models like Preisach and Jiles-Atherton (J-A), the micromagnetic Landau-Lifshitz-Gilbert (LLG) equation offers advantages such as clearer physical interpretation and higher simulation accuracy. However, its application to macroscopic static hysteresis simulation of electrical steel sheets has been limited due to computational intensity and memory constraints. This paper first proposes a geometric model discretization method for the LLG equation based on the Representative Volume Element (RVE) approach, tailored to the structural characteristics of electrical steel sheets. Subsequently, simplified expressions for the energy terms within the total Gibbs free energy are developed for the millimeter scale. A rapid parameter identification method for the relevant parameters is also introduced. This leads to the derivation of a simplified LLG equation specifically for macroscopic static hysteresis simulation in electrical steel sheets. Finally, the proposed simplified LLG equation is used to simulate static hysteresis loops of industry-grade grain-oriented (GO) and non-oriented (NO) silicon steel sheet samples under various operating conditions. The simulations exhibit strong agreement with measurements. Comparisons in simulation accuracy with the widely applied Preisach and J-A hysteresis models further validate the superiority of the proposed model and methodology.

Key words: micromagnetics, LLG equation, electrical steel sheet, representative volume element, static hysteresis


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?