[1] 赵斌, 谭恒, 梁告, 等. 高原高寒地区局部阴影下光伏阵列输出功率提升实验研究[J]. 中国电力, 2021, 54(8): 199–208 ZHAO Bin, TAN Heng, LIANG Gao, et al. Experimental research on photovoltaic arrays output power enhancement experiment under partial shading in frigid plateau region[J]. Electric Power, 2021, 54(8): 199–208 [2] 孙雯雯, 徐玉杰, 丁捷, 等. 高原高寒地区可再生能源与储能集成供能系统研究[J]. 储能科学与技术, 2019, 8(4): 678–688 SUN Wenwen, XU Yujie, DING Jie, et al. An energy system for the integration of renewable energy with energy storage in a frigid plateau region[J]. Energy Storage Science and Technology, 2019, 8(4): 678–688 [3] 李庆民, 于万水, 赵继尧. 支撑“双碳”目标的风光发电装备安全运行关键技术[J]. 高电压技术, 2021, 47(9): 3047–3060 LI Qingmin, YU Wanshui, ZHAO Jiyao. Key technologies for the safe operation of wind and solar power generation equipment in support of the “peak CO2 emissions and carbon neutrality” policy[J]. High Voltage Engineering, 2021, 47(9): 3047–3060 [4] KAMAL EL-SAYED S. Impact of photovoltaic tied to electrical grid system on power quality[J]. Journal of Electrical and Electronic Engineering, 2017, 5(2): 23. [5] 李东东, 郭天洋, 刘庆飞, 等. 计及光伏发电的新能源电力系统惯量评估[J]. 太阳能学报, 2021, 42(5): 174–179 LI Dongdong, GUO Tianyang, LIU Qingfei, et al. Inertia estimation of renewable power system considering photovoltaics[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 174–179 [6] WANG Q, CHEN L E, HU M Q, et al. Voltage prevention and emergency coordinated control strategy for photovoltaic power plants considering reactive power allocation[J]. Electric Power Systems Research, 2018, 163: 110–115. [7] 靳文涛, 徐少华, 张德隆, 等. 并网光伏电站MW级电池储能系统应用及响应时间测试[J]. 高电压技术, 2017, 43(7): 2425–2432 JIN Wentao, XU Shaohua, ZHANG Delong, et al. Application and response time test of MW-level battery energy storage system used in PV power station[J]. High Voltage Engineering, 2017, 43(7): 2425–2432 [8] 李相俊, 王上行, 惠东. 电池储能系统运行控制与应用方法综述及展望[J]. 电网技术, 2017, 41(10): 3315–3325 LI Xiangjun, WANG Shangxing, HUI Dong. Summary and prospect of operation control and application method for battery energy storage systems[J]. Power System Technology, 2017, 41(10): 3315–3325 [9] 刘英军, 刘亚奇, 张华良, 等. 我国储能政策分析与建议[J]. 储能科学与技术, 2021, 10(4): 1463–1473 LIU Yingjun, LIU Yaqi, ZHANG Hualiang, et al. Energy storage policy analysis and suggestions in China[J]. Energy Storage Science and Technology, 2021, 10(4): 1463–1473 [10] WANG K F, QIAO Y, XIE L R, et al. A fuzzy hierarchical strategy for improving frequency regulation of battery energy storage system[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(4): 689–698. [11] AKINYELE D O, RAYUDU R K, TAN R H G. Comparative study of photovoltaic technologies based on performance, cost and space requirement: strategy for selection and application[J]. International Journal of Green Energy, 2016, 13(13): 1352–1368. [12] EKE R, BETTS T R, GOTTSCHALG R. Spectral irradiance effects on the outdoor performance of photovoltaic modules[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 429–434. [13] 陈昕, 王海华. 晶体硅组件的选型及排布分析[J]. 电源技术, 2018, 42(11): 1666–1667, 1709 CHEN Xin, WANG Haihua. Selection and arrangement analysis of crystal silicon components[J]. Chinese Journal of Power Sources, 2018, 42(11): 1666–1667, 1709 [14] LI L Y, LIU P, LI Z, et al. A multi-objective optimization approach for selection of energy storage systems[J]. Computers & Chemical Engineering, 2018, 115: 213–225. [15] 李海玲, 陈旭, 吕芳, 等. 中国高原气候区下光伏组件实际运行衰减分析[J]. 太阳能学报, 2019, 40(6): 1560–1566 LI Hailing, CHEN Xu, LYU Fang, et al. Degradation analysis of photovoltaic modules under field operation plateau climate region of China[J]. Acta Energiae Solaris Sinica, 2019, 40(6): 1560–1566 [16] 王志民, 杨劲松, 佟强, 等. 高寒地区独立光伏系统降额设计与性能评价[J]. 太阳能学报, 2018, 39(12): 3384–3391 WANG Zhimin, YANG Jinsong, TONG Qiang, et al. Derating design and performance evaluation of stand alone pv system in paramos[J]. Acta Energiae Solaris Sinica, 2018, 39(12): 3384–3391 [17] 赵斌, 呼如威, 蒋东方, 等. 高寒高海拔地区微网储能锂电池系统优化设计[J]. 中国电力, 2020, 53(5): 128–134 ZHAO Bin, HU Ruwei, JIANG Dongfang, et al. Optimized design of lithium battery system for microgrid energy storage in severely cold and high elevation regions[J]. Electric Power, 2020, 53(5): 128–134 [18] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 特殊环境条件 高原电工电子产品 第1部分: 通用技术要求: GB/T 20626.1—2017[S]. 北京: 中国标准出版社, 2017. [19] 国家市场监督管理总局, 国家标准化管理委员会. 特殊环境条件 高原电工电子产品 第2部分: 选型和检验规范: GB/T 20626.2—2018[S]. 北京: 中国标准出版社, 2018. [20] 国家市场监督管理总局, 国家标准化管理委员会. 太阳能资源评估方法: GB/T 37526—2019[S]. 北京: 中国标准出版社, 2019. [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 特殊环境条件分级 第3部分: 高原: GB/T 19608.3—2004[S]. 北京: 中国标准出版社, 2005. [22] 国家能源局. 地面用晶体硅光伏组件环境适应性测试要求 第 4部分: 高原气候条件: NB/T 42104.4—2016 [23] 中华人民共和国住房和城乡建设部. 光伏发电站设计规范: GB 50797—2012[S]. 北京: 中国计划出版社, 2012.
|