中国电力 ›› 2021, Vol. 54 ›› Issue (8): 83-90.DOI: 10.11930/j.issn.1004-9649.202010061

• 电网 • 上一篇    下一篇

电力作业场景中一种高效的UWB和IMU融合定位算法

尹康涌1, 梁伟1, 杨吉斌2, 孙志明1, 朱孟周1, 肖鹏1   

  1. 1. 江苏省电力试验研究院有限公司,江苏 南京 211103;
    2. 陆军工程大学 指挥控制工程学院,江苏 南京 210007
  • 收稿日期:2020-10-21 修回日期:2021-01-17 发布日期:2021-08-05
  • 作者简介:尹康涌(1992-),男,硕士研究生,从事电力设备在线监测、电力安全技术研究,E-mail:yinkangyong@163.com;杨吉斌(1978-),男,通信作者,博士,副教授,从事智能信息处理、信息安全研究,E-mail:yjbice@sina.com
  • 基金资助:
    国家自然科学基金资助项目(基于过渡金属硫化物的三维共形异质结光电探测器研究,61904116)

An Efficient Positioning Algorithm Based on UWB and IMU Fusion in Electric Power Operation Scenes

YIN Kangyong1, LIANG Wei1, YANG Jibin2, SUN Zhiming1, ZHU Mengzhou1, XIAO Peng1   

  1. 1. Jiangsu Electric Power Research Institute Corporation Limited, Nanjing 211103, China;
    2. Command and Control School, Army Engineering University, Nanjing 210007, China
  • Received:2020-10-21 Revised:2021-01-17 Published:2021-08-05
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Study of the Three-Dimensional Conformal Heterojunction Photodetectors Based on Transition Metal Sulfide, No.61904116)

摘要: 在电力作业场景等复杂环境中,超宽带(UWB)定位存在非直达情况(NLOS)性能下降严重的问题,利用UWB与惯性测量单元(IMU)融合可以改善定位精度,但IMU的测量存在误差累积,需要精确的UWB测量校正。对NLOS条件进行准确的鉴别和利用有助于定位精度的提升。提出一种基于扩展卡尔曼滤波(EKF)的UWB/IMU融合算法,利用电力作业场合中UWB测量分布性质来判定NLOS条件,并进行误差的缓解,有效提升NLOS条件下的定位精度。由于该算法不需要对环境有先验知识,也不需要进行IMU校正等操作,可用性较好。理论和实验结果表明,该算法的性能优于其他基线系统。

关键词: 无线电定位, 超宽带, 惯性测量单元, 扩展卡尔曼滤波, 电力作业

Abstract: In complex environments such as electric power operation scenes, the performance of ultra wideband (UWB) positioning is seriously degraded due to non line of sight (NLOS) scenarios. The integration of UWB and inertial measurement unit (IMU) can improve the positioning accuracy, but there is error accumulation in IMU measurement, which requires accurate UWB measurement correction. Accurate identification and utilization of NLOS conditions is helpful to improve the positioning accuracy. In this paper, a UWB/IMU fusion algorithm based on extended Kalman filter (EKF) is proposed, which uses the distribution of UWB measurements in electric power operation scenes to determine NLOS conditions and mitigate errors, thus effectively improving the positioning accuracy under NLOS conditions. The proposed algorithm has good usability since it does not need prior knowledge of the environment and IMU correction. Theoretical and practical experimental results show that the performance of the proposed algorithm is superior to other baseline systems.

Key words: radio positioning, ultra wideband, inertial measurement unit, extend Kalman filter, electric operation