[1] 江秀臣, 刘亚东, 傅晓飞, 等. 输配电设备泛在电力物联网建设思路与发展趋势[J]. 高电压技术, 2019, 45(5):1345-1351 JIANG Xiuchen, LIU Yadong, FU Xiaofei, et al. Construction ideas and development trends of transmission and distribution equipment of the ubiquitous power internet of things[J]. High Voltage Engineering, 2019, 45(5):1345-1351 [2] 陈海拔, 顾全, 董羊城, 等. 基于大数据的电网调度控制智能告警系统[J]. 电子设计工程, 2019, 27(11):91-95 CHEN Haiba, GU Quan, DONG Yangcheng, et al. Power grid dispatching intelligent alarm system based on big data[J]. Electronic Design Engineering, 2019, 27(11):91-95 [3] 孙梦晨, 丛伟, 余江, 等. 电网运维大数据背景下的继电保护通信系统故障定位方法[J]. 电力自动化设备, 2019, 39(4):141-147 SUN Mengchen, CONG Wei, YU Jiang, et al. Fault locating method based on big data of power grid operation and maintenance for relay protection communication system[J]. Electric Power Automation Equipment, 2019, 39(4):141-147 [4] 阎博, 张昊, 郭子明, 等. 基于多源数据融合的电网故障综合分析与智能告警技术研究与应用[J]. 中国电力, 2018, 51(2):39-46 YAN Bo, ZHANG Hao, GUO Ziming, et al. Research and application of power grid fault integrated analysis and smart alarm based on multi-data source fusion[J]. Electric Power, 2018, 51(2):39-46 [5] 李志超, 李卫国, 夏喻, 等. 基于模糊综合评判的变压器套管绝缘状态评估[J]. 中国电力, 2018, 51(4):22-26, 60 LI Zhichao, LI Weiguo, XIA Yu, et al. Insulation condition assessment of transformer bushing based on fuzzy comprehensive evaluation[J]. Electric Power, 2018, 51(4):22-26, 60 [6] 冷喜武, 陈国平, 蒋宇, 等. 智能电网监控运行大数据分析系统的数据规范和数据处理[J]. 电力系统自动化, 2018, 42(19):169-178 LENG Xiwu, CHEN Guoping, JIANG Yu, et al. Data specification and processing in big-data analysis system for monitoring and operation of smart grid[J]. Automation of Electric Power Systems, 2018, 42(19):169-178 [7] 冷喜武, 陈国平, 蒋宇, 等. 智能电网监控运行大数据应用模型构建方法[J]. 电力系统自动化, 2018, 42(20):115-123 LENG Xiwu, CHEN Guoping, JIANG Yu, et al. Model construction method of big data application for monitoring and control of smart grid[J]. Automation of Electric Power Systems, 2018, 42(20):115-123 [8] 李岩, 滕云, 冷欧阳, 等. 数据驱动的输电线路在线监测装置可靠性评估[J]. 中国电机工程学报, 2018, 38(15):4410-4419, 4641 LI Yan, TENG Yun, LENG Ouyang, et al. Reliability evaluation of on-line monitoring device over transmission line based on data driven concept[J]. Proceedings of the CSEE, 2018, 38(15):4410-4419, 4641 [9] 谢龙君, 李黎, 程勇, 等. 融合集对分析和关联规则的变压器故障诊断方法[J]. 中国电机工程学报, 2015, 35(2):277-286 XIE Longjun, LI Li, CHENG Yong, et al. A fault diagnosis method of power transformers by integrated set pair analysis and association rules[J]. Proceedings of the CSEE, 2015, 35(2):277-286 [10] 张景明, 肖倩华, 王时胜. 融合粗糙集和神经网络的变压器故障诊断[J]. 高电压技术, 2007, 33(8):122-125 ZhANG Jingming, XIAO Qianhua, WANG Shisheng. Transformer fault diagnosis by combination of rough set and neural network[J]. High Voltage Engineering, 2007, 33(8):122-125 [11] 吴润泽, 陈文伟, 唐良瑞, 等. 基于高风险模式树挖掘方法的电力系统风险设备集分析[J]. 电力系统自动化, 2017, 41(18):137-145 WU Runze, CHEN Wenwei, TANG Liangrui, et al. High risk tree mining method for analysis of power system risk device set[J]. Automation of Electric Power Systems, 2017, 41(18):137-145 [12] 朱永利, 申涛, 李强. 基于支持向量机和DGA的变压器状态评估方法[J]. 电力系统及其自动化学报, 2008, 20(6):111-115 ZHU Yongli, SHEN Tao, LI Qiang. Transformer condition assessment based on support vector machine and DGA[J]. Proceedings of the CSU-EPSA, 2008, 20(6):111-115 [13] 韩赛赛, 刘宝柱, 艾欣. 基于MCMC方法和油色谱数据的变压器动态故障率模型[J]. 电力系统保护与控制, 2019, 47(15):1-8 HAN Saisai, LIU Baozhu, AI Xin. Transformer dynamic failure rate model based on MCMC method and oil chromatographic data[J]. Power System Protection and Control, 2019, 47(15):1-8 [14] 汪可, 李金忠, 张书琦, 等. 变压器故障诊断用油中溶解气体新特征参量[J]. 中国电机工程学报, 2016, 36(23):6570-6578,6625 WANG Ke, LI Jinzhong, ZHANG Shuqi, et al. New features derived from dissolved gas analysis for fault diagnosis of power transformers[J]. Proceedings of the CSEE, 2016, 36(23):6570-6578,6625 [15] 郑元兵, 孙才新, 李剑, 等. 变压器故障特征量可信度的关联规则分析[J]. 高电压技术, 2012, 38(1):82-88 ZHENG Yuanbing, SUN Caixin, Li Jian, et al. Association rule analysis on confidence of features for transformer faults[J]. High Voltage Engineering, 2012, 38(1):82-88 [16] 田凤兰, 张恩泽, 潘思蓉, 等. 基于特征量优选与ICA-SVM的变压器故障诊断模型[J]. 电力系统保护与控制, 2019, 47(17):163-170 TIAN Fenglan, ZHANG Enze, PAN Sirong, et al. Fault diagnosis model of power transformers based on feature quantity optimization and ICA-SVM[J]. Power System Protection and Control, 2019, 47(17):163-170 [17] CHANG Chichung, LIN Chihjen. LIBSVM:A library for support vector machines[J]. ACM Transaction on Intelligent Systems and Technology, 2011, 2(3):27-27. [18] 马利洁, 朱永利, 郑艳艳. 基于并行变量预测模型的变压器故障诊断及优化研究[J]. 电力系统保护与控制, 2019, 47(6):82-89 MA Lijie, ZHU Yongli, ZHENG Yanyan. Research on transformer fault diagnosis and optimization based on parallel variable prediction model[J]. Power System Protection and Control, 2019, 47(6):82-89 [19] WU Xindong, KUMAR V, QUINLAN J R, et al. Top 10 algorithms in data mining[J]. Knowledge and Information System, 2008, 14(1):1-37. [20] FRIEDMAN J.H. Greedy function approximation:a gradient boosting machine[J]. Annals of statistics, 2001:1189-1232. [21] 郑含博. 电力变压器状态评估及故障诊断方法研究[D]. 重庆:重庆大学, 2012. ZHENG Hanbo. Study on condition assessment and fault diagnosis approaches for power transformers[D]. Chongqing:Chongqing University, 2012. [22] 李春茂, 周妺末, 袁海满, 等. 基于DGA的粗糙集与决策信息融合变压器故障诊断[J]. 电工电能新技术, 2018, 37(1):84-90 LI Chunmao, ZHOU Momo, YUAN Haiman, et al. Fault diagnosis of transformer based on rough set theory and decision information fusion[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(1):84-90 [23] LIU Huan, SETIONO Rudy. Chi2:feature selection and discretization of numeric attributes[J]. IEEE Computer Society, 1995:388-391.
|