中国电力 ›› 2014, Vol. 47 ›› Issue (7): 6-11.DOI: 10.11930/j.issn.1004-9649.2014.7.6.5

• 发电 • 上一篇    下一篇

改进混沌离散粒子群与等微增率的机组组合优化

陈璟华, 周俊, 郭壮志, 刘国祥, 周广闯   

  1. 广东工业大学 自动化学院,广东 广州 510006
  • 收稿日期:2014-03-28 出版日期:2014-07-18 发布日期:2015-12-10
  • 作者简介:陈璟华(1974—),女,江西新余人,博士,副教授,从事电力系统安全运行与控制研究。E-mail: 43884010@qq.com
  • 基金资助:
    广东省自然科学基金资助项目(S2013040013776); 广东省教育厅育苗工程项目(2013LYM_0019); 广东省电力节能与新能源技术重点实验室资助项目(ZDSY200701)

Unit Commitment Based on Improved CDPSO Algorithm Combining Equal Incremental Rate Principle

CHEN Jing-hua, ZHOU Jun, GUO Zhuang-zhi, LIU Guo-xiang, ZHOU Guang-chuang   

  1. College of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2014-03-28 Online:2014-07-18 Published:2015-12-10
  • Supported by:
    This work is supported by the Natural Science Foundation Project of Guangdong Province(S2013040013776), Seedling Project in Department of Education of Guangdong Province(2013LYM_0019), and Key Laboratory of Guangdong Province Electric Power Energy-Saving and New Energy (ZDSY200701)

摘要: 针对火电机组组合问题具有非线性、离散性、随机性以及高维、非凸等特点,提出一种适用于求解大容量火电机组组合优化问题的改进混沌离散粒子群优化算法。基于改进混沌离散粒子群算法来确定机组启停决策变量,采用跟踪负荷变化并引入修正策略来修正机组启停决策变量,提高算法的效率和解的精度。采用Kuhn-Tucker最优性条件对等微增率进行改进,使其分配结果满足爬坡及出力上下限要求。通过改进的混沌离散粒子群与等微增率混合嵌套,分别对外层机组启、停状态变量和内层负荷分配进行交替迭代优化。仿真算例表明,所提出的算法在求解机组组合问题时具有较强的全局搜索能力和适应性。

关键词: 火电机组组合问题, 等微增率, 混沌离散粒子群优化, Kuhn-Tucker最优性条件

Abstract: In this paper, considering the characteristics of the unit commitment problems such as nonlinearity, discreteness, randomness, high-dimension and non-convexity, an improved chaotic discrete particle swarm optimization(CDPSO) algorithm, suitable for solving large-capacity thermal power unit combinatorial optimization issues, is proposed . The improved discrete particle swarm algorithm is used to determine the unit commitment decision variables. Furthermore, by tracking load changes and introducing amendments, the variables are revised to improve the efficiency of the algorithm and the accuracy of the solutions. The equal incremental rate principle is then improved by using Kuhn-Tucker optimality conditions to satisfy the climbing requirements as well as the upper and lower limits of generations. The unit startup and shutdown variables in the outer loop and the load dispatch in the inner loop are optimized through alternating iterations by embedding the improved chaotic particle swarm algorithm with the equal incremental rate principle. The simulation examples show that the proposed algorithm has strong global searching capability and adaptability in solving the unit commitment problems.

Key words: thermal power combinatorial problem, the equal incremental rate, chaotic discrete particle swarm optimization, Kuhn-Tucker optimality condition

中图分类号: