中国电力 ›› 2024, Vol. 57 ›› Issue (3): 103-112.DOI: 10.11930/j.issn.1004-9649.202310033
马汝括1(), 董杰2(
), 王雅湉2, 伊国鑫2, 丁祥浩2, 马乐2
收稿日期:
2023-10-12
出版日期:
2024-03-28
发布日期:
2024-03-26
作者简介:
马汝括(1973—),男,硕士,高级工程师,从事电力设备管理研究,E-mail:marukuo@163.com基金资助:
Rukuo MA1(), Jie DONG2(
), Yatian WANG2, Guoxin YI2, Xianghao DING2, Le MA2
Received:
2023-10-12
Online:
2024-03-28
Published:
2024-03-26
Supported by:
摘要:
高寒地区须携带多台仪器以满足3种不同量级SF6气体中CF4气体浓度的检测需求,现场运维效率低且仪器购置成本高。为此,首先设计了一种基于热释电检测技术的SF6气体中CF4气体浓度检测仪器,可自动选择不同的放大电阻以实现多量程切换。然后提出了BP和PSO-BP 2种神经网络温度-压力协同补偿模型,并通过搭建高效模拟实验平台为模型预测提供数据支撑,预测结果表明,PSO-BP神经网络优于BP神经网络。最后将PSO-BP神经网络温度-压力协同补偿模型内置于多量程检测仪器CF4气体浓度检测仪器。模拟实验结果表明,该检测仪器在不同温度和压力下,小量程和大量程检测误差和重复性分别不超过±2%和1.6%,混合比量程下误差和重复性分别不超过±0.5%和0.2%,对高寒地区电网运维检修具有重要作用。
马汝括, 董杰, 王雅湉, 伊国鑫, 丁祥浩, 马乐. 基于神经网络的高寒地区CF4和SF6/CF4检测[J]. 中国电力, 2024, 57(3): 103-112.
Rukuo MA, Jie DONG, Yatian WANG, Guoxin YI, Xianghao DING, Le MA. Neural Network-based CF4 and SF6/CF4 Detection in High Altitude and Extreme Cold Regions[J]. Electric Power, 2024, 57(3): 103-112.
量程 | 标气浓度/ (μL·L–1) | 实测浓度/ (μL·L–1) | ||||||||
小量程 | 0.0 | 0.8 | 41562 | 41669 | 107 | |||||
50.0 | 49.1 | 34502 | 41581 | 7079 | ||||||
100.0 | 98.5 | 27338 | 41734 | 14396 | ||||||
150.0 | 152.1 | 20153 | 41673 | 21520 | ||||||
200.0 | 198.7 | 13168 | 41696 | 28528 | ||||||
大量程 | 0.0 | 1.2 | 42975 | 43821 | 846 | |||||
500.0 | 489.1 | 36134 | 43759 | 7670 | ||||||
1000.0 | 1015.7 | 29110 | 43768 | 14565 | ||||||
1500.0 | 1532.3 | 22384 | 43785 | 21467 | ||||||
2000.0 | 1968.6 | 15432 | 43792 | 28360 | ||||||
混合比 | 0.0 | 0.5 | 44506 | 45521 | 1015 | |||||
20.0 | 20.3 | 36504 | 45559 | 9110 | ||||||
40.0 | 41.1 | 28351 | 45579 | 17187 | ||||||
60.0 | 58.5 | 20330 | 45568 | 25232 | ||||||
80.0 | 80.5 | 12279 | 45603 | 33324 |
表 1 不同量程标定实验
Table 1 Different measuring ranges calibration experiment
量程 | 标气浓度/ (μL·L–1) | 实测浓度/ (μL·L–1) | ||||||||
小量程 | 0.0 | 0.8 | 41562 | 41669 | 107 | |||||
50.0 | 49.1 | 34502 | 41581 | 7079 | ||||||
100.0 | 98.5 | 27338 | 41734 | 14396 | ||||||
150.0 | 152.1 | 20153 | 41673 | 21520 | ||||||
200.0 | 198.7 | 13168 | 41696 | 28528 | ||||||
大量程 | 0.0 | 1.2 | 42975 | 43821 | 846 | |||||
500.0 | 489.1 | 36134 | 43759 | 7670 | ||||||
1000.0 | 1015.7 | 29110 | 43768 | 14565 | ||||||
1500.0 | 1532.3 | 22384 | 43785 | 21467 | ||||||
2000.0 | 1968.6 | 15432 | 43792 | 28360 | ||||||
混合比 | 0.0 | 0.5 | 44506 | 45521 | 1015 | |||||
20.0 | 20.3 | 36504 | 45559 | 9110 | ||||||
40.0 | 41.1 | 28351 | 45579 | 17187 | ||||||
60.0 | 58.5 | 20330 | 45568 | 25232 | ||||||
80.0 | 80.5 | 12279 | 45603 | 33324 |
参数 | 归一化前 | 归一化后 | ||||||
min | max | min | max | |||||
51 | 38673 | –1 | 1 | |||||
T/℃ | –39.4 | 39.8 | –1 | 1 | ||||
P/MPa | 0.062 | 0.119 | –1 | 1 | ||||
D/% | 4×10–5 | 79.7 | –1 | 1 |
表 2 归一化前后数据
Table 2 Before and after normalization data
参数 | 归一化前 | 归一化后 | ||||||
min | max | min | max | |||||
51 | 38673 | –1 | 1 | |||||
T/℃ | –39.4 | 39.8 | –1 | 1 | ||||
P/MPa | 0.062 | 0.119 | –1 | 1 | ||||
D/% | 4×10–5 | 79.7 | –1 | 1 |
指标 | 量程 | 补偿前 | BP补偿后 | PSO-BP补偿后 | ||||
小量程 | 424.5 | 212.9 | 160.9 | |||||
大量程 | 149555.0 | 19396.5 | 5850.8 | |||||
混合比 | 115.2 | 13.5 | 3.4 | |||||
小量程 | 165.1 | 26.8 | 6.5 | |||||
大量程 | 17935.0 | 1843.6 | 425.4 | |||||
混合比 | 13.1 | 0.7 | 0.1 | |||||
小量程 | 12.1 | 5.0 | 2.2 | |||||
大量程 | 123.0 | 1843.6 | 425.4 | |||||
混合比 | 3.3 | 0.83 | 0.24 |
表 3 补偿前、BP和PSO-BP补偿后的主要评价指标
Table 3 The main evaluation indicators of uncompensated , BP and PSO-BP compensation
指标 | 量程 | 补偿前 | BP补偿后 | PSO-BP补偿后 | ||||
小量程 | 424.5 | 212.9 | 160.9 | |||||
大量程 | 149555.0 | 19396.5 | 5850.8 | |||||
混合比 | 115.2 | 13.5 | 3.4 | |||||
小量程 | 165.1 | 26.8 | 6.5 | |||||
大量程 | 17935.0 | 1843.6 | 425.4 | |||||
混合比 | 13.1 | 0.7 | 0.1 | |||||
小量程 | 12.1 | 5.0 | 2.2 | |||||
大量程 | 123.0 | 1843.6 | 425.4 | |||||
混合比 | 3.3 | 0.83 | 0.24 |
实验 编号 | 实验组别 | 均值c | RSD/% | |||||||
1 | 2 | 3 | ||||||||
1 | 97.6 μL/L | 97.3 μL/L | 98.6 μL/L | 97.8 μL/L | 0.3 | |||||
4 | 51.2 μL/L | 52.1 μL/L | 50.4 μL/L | 51.2 μL/L | 1.0 | |||||
7 | 1003.4 μL/L | 1012.7 μL/L | 1006.1 μL/L | 1007.4 μL/L | 1.6 | |||||
11 | 1513.2 μL/L | 1508.4 μL/L | 1503.7 μL/L | 1508.4 μL/L | 1.1 | |||||
14 | 59.3% | 59.2% | 59.6% | 59.4% | 0.1 | |||||
18 | 21.2% | 21.7% | 21.6% | 21.5% | 0.2 |
表 4 重复性实验数据
Table 4 Repeatable experimental data
实验 编号 | 实验组别 | 均值c | RSD/% | |||||||
1 | 2 | 3 | ||||||||
1 | 97.6 μL/L | 97.3 μL/L | 98.6 μL/L | 97.8 μL/L | 0.3 | |||||
4 | 51.2 μL/L | 52.1 μL/L | 50.4 μL/L | 51.2 μL/L | 1.0 | |||||
7 | 1003.4 μL/L | 1012.7 μL/L | 1006.1 μL/L | 1007.4 μL/L | 1.6 | |||||
11 | 1513.2 μL/L | 1508.4 μL/L | 1503.7 μL/L | 1508.4 μL/L | 1.1 | |||||
14 | 59.3% | 59.2% | 59.6% | 59.4% | 0.1 | |||||
18 | 21.2% | 21.7% | 21.6% | 21.5% | 0.2 |
1 | 张咪, 高克利, 侯华, 等. SF6替代绝缘气体的虚拟筛选与分子设计综述[J]. 高电压技术, 2023, 49 (7): 2816- 2830. |
ZHANG Mi, GAO Keli, HOU Hua, et al. Review on computational screening and molecular design of replacement gases for SF6[J]. High Voltage Engineering, 2023, 49 (7): 2816- 2830. | |
2 | 林林, 陈庆国, 程嵩, 等. 基于密度泛函理论的SF6潜在可替代性气体介电性能分析[J]. 电工技术学报, 2018, 33 (18): 4382- 4388. |
LIN Lin, CHEN Qingguo, CHENG Song, et al. The analysis of SF6 potential alternative gas dielectric strength based on density functional theory[J]. Transactions of China Electrotechnical Society, 2018, 33 (18): 4382- 4388. | |
3 | 王越. SF6/N2混合气体间隙击穿与沿面闪络特性研究[D]. 沈阳: 沈阳工业大学, 2021. |
WANG Yue. Research on gap breakdown and flashover characteristics of SF6/N2[D]. Shenyang: Shenyang University of Technology, 2021. | |
4 | 和彦淼, 黄印, 颜湘莲, 等. SF6混合气体和环保替代气体设备标准化研究[J/OL]. 中国电力, 1–8 [2023-06-08] (2023-11-07).http://kns.cnki.net/kcms/detail/11.3265.tm.20230607.1158.008.html. |
HE Yanmiao, HUANG Yin, YAN Xianglian, et al. Standardization research and construction on electrical equipment using SF6 gas mixture and eco-friendly alternative gas[J]. Electric Power, 1–8 [2023-06-08] (2023-11-07).http://kns.cnki.net/kcms/detail/11.3265.tm.20230607.1158.008.html. | |
5 | 赵晓民, 韩国辉, 刘文魁, 等. 高压断路器用SF6/CF4混合气体状态参数计算及液化分析[J]. 高压电器, 2016, 52 (12): 204- 208. |
ZHAO Xiaomin, HAN Guohui, LIU Wenkui, et al. Liquefaction and state parameters of SF6/CF4 mixed gas in high voltage circuit breaker[J]. High Voltage Apparatus, 2016, 52 (12): 204- 208. | |
6 |
周倩, 柯锟, 张晓星, 等. 基于SF6混合气体绝缘性能的设备补气策略研究[J]. 电力工程技术, 2021, 40 (4): 175- 181.
DOI |
ZHOU Qian, KE Kun, ZHANG Xiaoxing, et al. Air supply strategy of equipment based on SF6 mixed gas insulation performance[J]. Electric Power Engineering Technology, 2021, 40 (4): 175- 181.
DOI |
|
7 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业六氟化硫: GB/T 12022—2014[S]. 北京: 中国标准出版社, 2014. |
8 | 李予全, 吴司颖, 董曼玲, 等. SF6气体绝缘设备局部放电分解特征组分三角形诊断法[J]. 绝缘材料, 2022, 55 (11): 86- 92. |
LI Yuquan, WU Siying, DONG Manling, et al. Research on insulation fault diagnosis method of SF6 equipment based on decomposed components analysis[J]. Insulating Materials, 2022, 55 (11): 86- 92. | |
9 |
WU Z T, PANG X B, XING B, et al. Development of a portable and sensitive CO2 measurement device with NDIR sensor clusters and minimizing water vapor impact[J]. Sustainability, 2023, 15 (2): 1533.
DOI |
10 | 熊涛, 高明, Des Gibson, 等. 新型光室结构的主流式NDIR呼吸CO2监测系统[J]. 红外与激光工程, 2020, 49 (6): 248- 256. |
XIONG Tao, GAO Ming, GIBSON D, et al. Mainstream NDIR breathing CO2 monitoring system based on new light chamber structure[J]. Infrared and Laser Engineering, 2020, 49 (6): 248- 256. | |
11 | 陈胜源. 基于NDIR技术的SF6气体浓度检测系统设计[D]. 武汉: 华中科技大学, 2018. |
CHEN Shengyuan. Design of SF6 gas detector-based on NDIR technology[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
12 | 张加宏, 朱涵, 顾芳, 等. 非色散红外CO2气体传感器的抗温湿度干扰设计[J]. 电子测量与仪器学报, 2022, 36 (7): 160- 169. |
ZHANG Jiahong, ZHU Han, GU Fang, et al. Anti-interference design of temperature and humidity fornon-dispersive infrared CO2 gas sensor[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36 (7): 160- 169. | |
13 | 王富忠. NDIR二氧化碳传感器信号读出电路研究[D]. 成都: 电子科技大学, 2023. |
WANG Fuzhong. Research on signal readout circuit of NDIR CO2 sensor[D]. Chengdu: University of Electronic Science and Technology of China, 2023. | |
14 | PROKOPIUK A, BIELECKI Z, WOJTAS J. Improving the accuracy of the NDIR-based CO2 sensor for breath analysis[J]. Metrology and Measurement Systems, 2021: 803–812. |
15 |
孙亚飞, 顾芳, 黄亚磊, 等. 基于GA-WNN温度补偿的红外CO2气体传感器系统研究[J]. 传感技术学报, 2018, 31 (10): 1613- 1620.
DOI |
SUN Yafei, GU Fang, HUANG Yalei, et al. Research on infrared CO2 gas sensor system with temperature compensation based on GA-WNN[J]. Chinese Journal of Sensors and Actuators, 2018, 31 (10): 1613- 1620.
DOI |
|
16 |
潘甫钱, 胡斌, 梁晓瑜, 等. 非色散红外CO2传感器温度补偿方法研究[J]. 激光与红外, 2023, 53 (6): 887- 894.
DOI |
PAN Fuqian, HU Bin, LIANG Xiaoyu, et al. Research on temperature compensation method of non-dispersive infrared CO2 sensor[J]. Laser & Infrared, 2023, 53 (6): 887- 894.
DOI |
|
17 | 裴昱, 陈远鸣, 卞晓阳, 等. 基于RBF神经网络气压补偿的非色散红外SF6气体传感器[J]. 应用光学, 2018, 39 (3): 366- 372. |
PEI Yu, CHEN Yuanming, BIAN Xiaoyang, et al. Non-dispersion infrared SF6 gas sensor with air pressure compensation based on RBF neural network[J]. Journal of Applied Optics, 2018, 39 (3): 366- 372. | |
18 | 杨桢, 马钰超, 李丽, 等. 基于HHT和GA-BP的电压暂降源定位方法[J]. 中国电力, 2022, 55 (3): 97- 104. |
YANG Zhen, MA Yuchao, LI Li, et al. A novel method for voltage sag source location based on HHT and GA-BP[J]. Electric Power, 2022, 55 (3): 97- 104. | |
19 |
刘伟吉, 冯嘉豪, 祝效华, 等. 基于动量自适应学习率PSO-BP神经网络的钻速预测模型研究[J]. 科学技术与工程, 2023, 23 (24): 10264- 10272.
DOI |
LIU Weiji, FENG Jiahao, ZHU Xiaohua, et al. Prediction model of penetration rate based on PSO-BP neural network with momentum adaptive learning rate[J]. Science Technology and Engineering, 2023, 23 (24): 10264- 10272.
DOI |
|
20 | 甘智超, 郭硕昌, 陶盈盈, 等. 基于PCA-BP神经网络的管道内壁几何形状识别[J]. 固体力学学报, 2023, 44 (5): 622- 636. |
GAN Zhichao, GUO Shuochang, TAO Yingying, et al. Identification of pipeline inner wall geometry based on the PCA-BP neural network[J]. Chinese Journal of Solid Mechanics, 2023, 44 (5): 622- 636. | |
21 | 宋伟业, 刘灵玥, 阎洁, 等. 基于深度强化学习的海上风电集群自进化功率平滑控制方法[J]. 中国电力, 2023, 56 (3): 36- 46. |
SONG Weiye, LIU Lingyue, YAN Jie, et al. Self-evolving power smooth control method for offshore wind power cluster based on deep reinforcement learning[J]. Electric Power, 2023, 56 (3): 36- 46. | |
22 | 梁恩豪, 孙军伟, 王延峰. 基于自适应樽海鞘算法优化BP的风光互补并网发电功率预测[J]. 电力系统保护与控制, 2021, 49 (24): 114- 120. |
LIANG Enhao, SUN Junwei, WANG Yanfeng. Wind and solar complementary grid-connected power generation prediction based on BP optimized by a swarm intelligence algorithm[J]. Power System Protection and Control, 2021, 49 (24): 114- 120. | |
23 | 陈鹏, 郎需军, 国震, 等. 基于改进BP神经网络和多目标粒子群算法的四回路导线布置优化[J]. 电力科学与技术学报, 2023, 38 (4): 151- 161. |
CHEN Peng, LANG Xujun, GUO Zhen, et al. Optimization of four-circuit wire arrangement based on improved BP neural network and multi-objective particle swarm optimization algorithm[J]. Journal of Electric Power Science and Technology, 2023, 38 (4): 151- 161. | |
24 | 张沛, 朱驻军, 刘曌, 等. 基于RReliefF-BP网络的新型电力系统静态电压稳定在线评估方法[J]. 南方电网技术, 2023, 17 (3): 65- 74. |
ZHANG Pei, ZHU Zhujun, LIU Zhao, et al. Online assessment method for static voltage stability of new power system based on RReliefF-BP network[J]. Southern Power System Technology, 2023, 17 (3): 65- 74. | |
25 |
王海燕, 刘佳康, 邓亚平. 基于预估-校正综合BP神经网络的短期光伏功率预测[J]. 智慧电力, 2023, 51 (3): 46- 52.
DOI |
WANG Haiyan, LIU Jiakang, DENG Yaping. Short-term photovoltaic power forecasting based on predict-correct combination BP neural network[J]. Smart Power, 2023, 51 (3): 46- 52.
DOI |
[1] | 刘培忠, 杨志军. 高寒地区间接空冷机组散热器防冻预暖措施[J]. 中国电力, 2013, 46(5): 18-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||