中国电力 ›› 2023, Vol. 56 ›› Issue (12): 31-40.DOI: 10.11930/j.issn.1004-9649.202306057
• 分布式智能电网的规划、运行和电力交易 • 上一篇 下一篇
孙东磊(), 王耀(
), 张惠雯(
), 刘蕊(
), 石冰珂(
)
收稿日期:
2023-06-17
出版日期:
2023-12-28
发布日期:
2023-12-28
作者简介:
孙东磊(1988—),男,通信作者,博士,高级工程师,从事电力系统规划技术研究,E-mail: sdusdlei@sina.com基金资助:
Donglei SUN(), Yao WANG(
), Huiwen ZHANG(
), Rui LIU(
), Bingke SHI(
)
Received:
2023-06-17
Online:
2023-12-28
Published:
2023-12-28
Supported by:
摘要:
随着“双碳”目标的提出,未来配电网中会面临极高比例的光伏等新能源接入,电压越限、潮流返送等问题频繁发生。在充分利用配电网已有调压手段和无功补偿的基础上,由于分布式光伏装机容量太大无法就地消纳,光伏大功率返送导致节点电压越上限。针对此问题,提出了一种基于矩差分析的分布式储能优化配置方法。提出了光伏矩和负荷矩的概念,进而提出了矩差的概念,对矩差和节点电压之间的关系进行了公式推导和理论分析,得出了配电网节点电压与矩差之间的关联关系,并详细阐述了光伏矩和负荷矩的计算方法。在此基础上,提出了一种基于矩差分析的配电网储能优化配置方法,以发生光伏返送时保证配电网所有节点不发生电压越上限为目标。IEEE 33节点配电网系统算例表明,与传统的智能优化算法相比,所提方法直接确定储能安装位置,计算效率高,计算结果准确,工程实用性强。
孙东磊, 王耀, 张惠雯, 刘蕊, 石冰珂. 基于矩差分析的配电网分布式储能优化配置[J]. 中国电力, 2023, 56(12): 31-40.
Donglei SUN, Yao WANG, Huiwen ZHANG, Rui LIU, Bingke SHI. Optimal Configuration of Distributed Energy Storage in Distribution Networks Based on Moment Difference Analysis[J]. Electric Power, 2023, 56(12): 31-40.
储能安装位置 | 储能功率/kW | 储能容量/(kW·h) | ||
18节点 | 149 | 108 |
表 1 满足电压要求的最小储能配置(单支路场景)
Table 1 Minimum storage configuration to meet voltage requirement (single-branch scenario)
储能安装位置 | 储能功率/kW | 储能容量/(kW·h) | ||
18节点 | 149 | 108 |
储能安装位置 | 储能功率/kW | 储能容量/(kW·h) | ||||||
18节点 | 33节点 | 18节点 | 33节点 | |||||
18、33节点 | 199 | 53 | 183 | 52 |
表 2 满足电压要求的最小储能配置(多支路场景)
Table 2 Minimum storage configuration to meet voltage requirements (multiple branch scenario)
储能安装位置 | 储能功率/kW | 储能容量/(kW·h) | ||||||
18节点 | 33节点 | 18节点 | 33节点 | |||||
18、33节点 | 199 | 53 | 183 | 52 |
时段/ min | 储能最小功率/ kW | 储能容量/ (kW·h) | 储能最优位置 | 计算时间/s | ||||||||||||
粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | |||||||||
45 | 29 | 29 | 108 | 108 | 18 节点 | 18 节点 | 2054 | 30.4 | ||||||||
46 | 102 | 101 | ||||||||||||||
47 | 149 | 149 | ||||||||||||||
48 | 43 | 43 | ||||||||||||||
49 | 79 | 79 | ||||||||||||||
51 | 31 | 31 |
表 3 单支路电压越限场景结果对比
Table 3 Comparison of single-branch overvoltage scenarios
时段/ min | 储能最小功率/ kW | 储能容量/ (kW·h) | 储能最优位置 | 计算时间/s | ||||||||||||
粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | |||||||||
45 | 29 | 29 | 108 | 108 | 18 节点 | 18 节点 | 2054 | 30.4 | ||||||||
46 | 102 | 101 | ||||||||||||||
47 | 149 | 149 | ||||||||||||||
48 | 43 | 43 | ||||||||||||||
49 | 79 | 79 | ||||||||||||||
51 | 31 | 31 |
时段/ min | 储能最小功率/ kW | 储能容量/ (kW·h) | 储能最优位置 | 计算时间/s | ||||||||||||
粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | |||||||||
46 | 68/17 | 68/17 | 183/52 | 183/52 | 18/33 节点 | 18/33 节点 | 2125 | 67 | ||||||||
47 | 199/53 | 199/53 | ||||||||||||||
48 | 147/47 | 147/47 | ||||||||||||||
49 | 135/37 | 135/37 | ||||||||||||||
50 | 89/26 | 89/26 | ||||||||||||||
51 | 94/31 | 94/31 |
表 4 多分支电压越限场景结果对比
Table 4 Comparison of multiple branch overvoltage scenario
时段/ min | 储能最小功率/ kW | 储能容量/ (kW·h) | 储能最优位置 | 计算时间/s | ||||||||||||
粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | 粒子群算法 | 本文方法 | |||||||||
46 | 68/17 | 68/17 | 183/52 | 183/52 | 18/33 节点 | 18/33 节点 | 2125 | 67 | ||||||||
47 | 199/53 | 199/53 | ||||||||||||||
48 | 147/47 | 147/47 | ||||||||||||||
49 | 135/37 | 135/37 | ||||||||||||||
50 | 89/26 | 89/26 | ||||||||||||||
51 | 94/31 | 94/31 |
典型日场景 | 节点储能功率/kW | 节点储能容量/(kW·h) | ||||||||
18节点 | 33节点 | 18节点 | 33节点 | 总计 | ||||||
1 | 95 | 0 | 134 | 0 | 134 | |||||
2 | 213 | 56 | 174 | 93 | 267 | |||||
3 | 64 | 187 | 71 | 168 | 239 | |||||
4 | 0 | 105 | 0 | 152 | 152 |
表 5 IEEE 33节点配电网储能配置结果
Table 5 Energy storage configuration result of IEEE 33-node distribution network
典型日场景 | 节点储能功率/kW | 节点储能容量/(kW·h) | ||||||||
18节点 | 33节点 | 18节点 | 33节点 | 总计 | ||||||
1 | 95 | 0 | 134 | 0 | 134 | |||||
2 | 213 | 56 | 174 | 93 | 267 | |||||
3 | 64 | 187 | 71 | 168 | 239 | |||||
4 | 0 | 105 | 0 | 152 | 152 |
储能安装位置 | 储能功率/kW | 储能容量/(kW·h) | ||||||
18节点 | 33节点 | 18节点 | 33节点 | |||||
18、33节点 | 213 | 187 | 174 | 168 |
表 6 满足电压要求的最小储能配置
Table 6 Minimum storage configuration to meet voltage requirements
储能安装位置 | 储能功率/kW | 储能容量/(kW·h) | ||||||
18节点 | 33节点 | 18节点 | 33节点 | |||||
18、33节点 | 213 | 187 | 174 | 168 |
1 | 光伏细则出台[J]. 国家电网, 2013(12): 16. |
2 | 吕贝, 邱河梅, 张宇. 太阳能光伏发电产业现状及发展[J]. 华电技术, 2010, 32 (1): 73- 76, 82. |
LÜ Bei, QIU Hemei, ZHANG Yu. Situation and development of solar photovoltaic power generation industry[J]. Huadian Technology, 2010, 32 (1): 73- 76, 82. | |
3 |
刘蕾, 楚春礼, 鞠美庭. 中国分布式光伏发电政策演变和发展探讨[J]. 未来与发展, 2018, 42 (6): 6- 14.
DOI |
LIU Lei, CHU Chunli, JU Meiting. Policy evolution and development of distributed photovoltaic power generation in China[J]. Future and Development, 2018, 42 (6): 6- 14.
DOI |
|
4 | 李世辉, 王琪, 贾晓卜, 等. 虑热泵负荷和分布式光伏的配微网协调调度[J]. 中国电力, 2022, 55 (9): 29- 37. |
LI Shihui, WANG Qi, JIA Xiaobo, et al. Coordinated scheduling of distribution networks and microgrids considering heat pump load and distributed photovoltaic[J]. Electric Power, 2022, 55 (9): 29- 37. | |
5 | 陈璨, 白明辉, 张婉明, 等. 分布式光伏边界渗透率快速定位及消纳方案择优[J]. 中国电力, 2022, 55 (8): 40- 50. |
CHEN Can, BAI Minghui, ZHANG Wanming, et al. Fast positioning of marginal hosting capacity and optimal selection of accommodation scheme for distributed PVs[J]. Electric Power, 2022, 55 (8): 40- 50. | |
6 | 宣文博, 李慧, 刘忠义, 等. 一种基于虚拟电厂技术的城市可再生能源消纳能力提升方法[J]. 发电技术, 2021, 42 (3): 289- 297. |
XUAN Wenbo, LI Hui, LIU Zhongyi, et al. A method for improving accommodating capability of urban renewable energy based on virtual power plant technology[J]. Power Generation Technology, 2021, 42 (3): 289- 297. | |
7 |
曾鸣, 杨雍琦, 向红伟, 等. 兼容需求侧资源的“源-网-荷-储”协调优化调度模型[J]. 电力自动化设备, 2016, 36 (2): 102- 111.
DOI |
ZENG Ming, YANG Yongqi, XIANG Hongwei, et al. Optimal dispatch model based on coordination between "generation- grid- load- energy storage" and demand-side resource[J]. Electric Power Automation Equipment, 2016, 36 (2): 102- 111.
DOI |
|
8 | 徐韵, 颜湘武, 李若瑾, 等. 电力市场环境下含“源-网-荷-储”互动的主动配电网有功/无功联合优化[J]. 电网技术, 2019, 43 (10): 3778- 3789. |
XU Yun, YAN Xiangwu, LI Ruojin, et al. Joint optimization of active and reactive powers in active distribution network with "generation-grid-load-energy storage" interaction in power market environment[J]. Power System Technology, 2019, 43 (10): 3778- 3789. | |
9 |
蒋凯, 李浩秒, 李威, 等. 几类面向电网的储能电池介绍[J]. 电力系统自动化, 2013, 37 (1): 47- 53.
DOI |
JIANG Kai, LI Haomiao, LI Wei, et al. On several battery technologies for power grids[J]. Automation of Electric Power Systems, 2013, 37 (1): 47- 53.
DOI |
|
10 |
严干贵, 冯晓东, 李军徽, 等. 用于松弛调峰瓶颈的储能系统容量配置方法[J]. 中国电机工程学报, 2012, 32 (28): 27- 35, 22.
DOI |
YAN Gangui, FENG Xiaodong, LI Junhui, et al. Optimization of energy storage system capacity for relaxing peak load regulation bottlenecks[J]. Proceedings of the CSEE, 2012, 32 (28): 27- 35, 22.
DOI |
|
11 | 陈崇德, 郭强, 宋子秋, 等. 计及碳收益的风电场混合储能容量优化配置[J]. 中国电力, 2022, 55 (12): 22- 33. |
CHEN Chongde, GUO Qiang, SONG Ziqiu, et al. Optimal configuration of hybrid energy storage capacity for wind farms considering carbon trading revenue[J]. Electric Power, 2022, 55 (12): 22- 33. | |
12 |
史林军, 杨帆, 刘英, 等. 计及社会发展的多场景用户侧储能容量优化配置[J]. 电力系统保护与控制, 2021, 49 (22): 59- 66.
DOI |
SHI Linjun, YANG Fan, LIU Ying, et al. Multi-scenario user-side energy storage capacity optimization configuration considering social development[J]. Power System Protection and Control, 2021, 49 (22): 59- 66.
DOI |
|
13 | 张冲, 荣娜. 基于改进粒子群算法的新能源侧储能容量配置[J]. 电网与清洁能源, 2022, 38 (10): 98- 105. |
ZHANG Chong, RONG Na. Energy storage capacity allocation of renewable energy side based on improved particle swarm optimization[J]. Power System and Clean Energy, 2022, 38 (10): 98- 105. | |
14 |
温春雪, 赵天赐, 于赓, 等. 基于改进粒子群算法的储能优化配置[J]. 电气技术, 2022, 23 (10): 1- 9, 58.
DOI |
WEN Chunxue, ZHAO Tianci, YU Geng, et al. Optimal configuration of energy storage based on improved particle swarm optimization[J]. Electrical Engineering, 2022, 23 (10): 1- 9, 58.
DOI |
|
15 |
汤翔鹰, 胡炎, 郑棣, 等. 考虑电网灵活性的微电网储能优化配置方法[J]. 供用电, 2020, 37 (12): 54- 60.
DOI |
TANG Xiangying, HU Yan, ZHENG Di, et al. Research on optimal configuration of energy storage in microgrid considering grid flexibility[J]. Distribution & Utilization, 2020, 37 (12): 54- 60.
DOI |
|
16 |
王成磊, 唐岚, 周子超, 等. 计及灵活性供需平衡的储能优化配置[J]. 电力科学与工程, 2023, 39 (4): 1- 11.
DOI |
WANG Chenglei, TANG Lan, ZHOU Zichao, et al. Energy storage optimal allocation considering flexibility supply and demand balance[J]. Electric Power Science and Engineering, 2023, 39 (4): 1- 11.
DOI |
|
17 | 朱佩雪, 郭倩, 李灵至, 等. 考虑主动配电网脆弱性的分布式储能配置[J/OL]. 电测与仪表: 1–8[2023-10-19]. http://kns.cnki.net/kcms/detail/23.1202.TH.20221019.1512.014.html. |
ZHU Peixue, GUO Qian, LI Lingzhi, et al. Distributed energy storage configuration considering the vulnerability of active distribution network[J/OL]. Electrical Measurement & Instrumentation: 1–8[2023-10-19]. http://kns.cnki.net/kcms/detail/23.1202.TH.20221019.1512.014.html. | |
18 |
梅书凡, 檀勤良, 代美. 考虑风光出力季节性波动的储能容量配置[J]. 电力工程技术, 2022, 41 (4): 51- 57.
DOI |
MEI Shufan, TAN Qinliang, DAI Mei. Energy storage capacity configuration considering seasonal fluctuation of wind and photovoltaic output[J]. Electric Power Engineering Technology, 2022, 41 (4): 51- 57.
DOI |
[1] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王文烨, 张帅, 赵凤展. 计及激励型需求响应的低压配电网混合储能优化配置[J]. 中国电力, 2024, 57(6): 90-101. |
[2] | 赵源上, 林伟芳. 基于皮尔逊相关系数融合密度峰值和熵权法典型场景研究[J]. 中国电力, 2023, 56(5): 193-202. |
[3] | 易锦桂, 朱自伟, 谢青. 基于改进场景聚类算法的海上风电储能优化配置研究[J]. 中国电力, 2022, 55(12): 2-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||