中国电力 ›› 2022, Vol. 55 ›› Issue (6): 194-201.DOI: 10.11930/j.issn.1004-9649.202108060

• 新能源 • 上一篇    下一篇

区分工作日和非工作日负荷的用户侧储能多目标优化策略

孙伟伟1,2, 寇潇文1,2, 周光1,2, 李满礼1,2   

  1. 1. 南瑞集团(国网电力科学研究院)有限公司,江苏 南京 211000;
    2. 国电南瑞科技股份有限公司,江苏 南京 211000
  • 收稿日期:2021-08-17 修回日期:2021-11-02 出版日期:2022-06-28 发布日期:2022-06-18
  • 作者简介:孙伟伟(1990—),男,通信作者,硕士研究生,工程师,从事综合能源协调控制研究,E-mail:sundouwei_607@ 126.com;寇潇文(1993—),男,硕士研究生,工程师,从事微电网电力协调控制系统研究,E-mail:kouxiaowen@sgepri. sgcc.com.cn;周光(1988—),男,硕士,工程师,从事现货交易、虚拟电厂研究,E-mail:zhouguang@sgepri.sgcc.com.cn
  • 基金资助:
    国家电网有限公司科技项目(5400-202155392A-0-0-00)

Multi-objective Optimization Strategy of User-Side Energy Storage Operation Differentiating Working / Nonworking Load

SUN Weiwei1,2, KOU Xiaowen1,2, ZHOU Guang1,2, LI Manli1,2   

  1. 1. Nari Group Corporation/State Grid Electric Power Research Institute, Nanjing 211000, China;
    2. Nari Technology Co., Ltd., Nanjing 211000, China
  • Received:2021-08-17 Revised:2021-11-02 Online:2022-06-28 Published:2022-06-18
  • Supported by:
    This work is supported by Science and Technology Project of SGCC(No.5400-202155392A-0-0-00)

摘要: 在两部制电价下,为了更高效地利用储能提升用户的综合效益,通过构建需量管理、储能收益、负荷波动幅度增加率及SOC过程控制模型,提出了区分工作日和非工作日负荷的用户侧储能多目标优化策略,可有效实现降低用户月度用电成本、降低负荷波动幅度增加率及减少储能充放电及待机状态转换次数的多目标优化,并利用Matlab调用Cplex求解器对某大工业用户进行算例优化,验证了策略的可行性。

关键词: 用户侧储能, 需量管理, 储能收益, 负荷波动幅度增加率, SOC过程控制

Abstract: Under the two-part electricity price, in order to make more efficient use of energy storage and improve the comprehensive benefits obtained by users, a user side energy storage multi-objective optimization strategy distinguishing working / nonworking load is proposed by constructing demand management, energy storage income, load fluctuation increase rate and SOC process control model. It can effectively realize the multi-objective optimization of reducing the monthly power consumption cost of users, reducing the increase rate of load fluctuation range and reducing the times of energy storage charge and discharge and standby state conversion. An example of a large industrial user is optimized by calling CPLEX solver with MATLAB to verify the feasibility of the strategy.

Key words: user-side energy storage, demand management, energy storage income, increase rate of load fluctuation amplitude, SOC process control