[1] 黄明亮, 兰生. 140℃与常温条件下油纸绝缘沿面放电产气特性[J]. 绝缘材料, 2018, 51(6): 47–53 HUANG Mingliang, LAN Sheng. Gas generation characteristics of surface discharge of oil-paper insulation under 140 ℃ and room temperature[J]. Insulating Materials, 2018, 51(6): 47–53 [2] 陈伟根, 蔚超, 孙才新, 等. 变压器油纸绝缘气隙放电特性及其产气规律[J]. 高电压技术, 2010, 36(4): 849–855 CHEN Weigen, WEI Chao, SUN Caixin, et al. Air-gap discharge characteristics in transformer oil-paper insulation and gas generation law[J]. High Voltage Engineering, 2010, 36(4): 849–855 [3] 胡小博, 李坤, 陈荣, 等. 天然酯绝缘油在油纸界面放电故障条件下的分解产气特性研究[J]. 绝缘材料, 2019, 52(11): 70–74 HU Xiaobo, LI Kun, CHEN Rong, et al. Gas generation characteristics of natural ester under discharge fault at oil-pressboard interface[J]. Insulating Materials, 2019, 52(11): 70–74 [4] 金辉, 于淼, 龙方宇, 等. 电压类型对柱板电极放电故障下油纸绝缘产气特性的影响[J]. 现代电力, 2014, 31(4): 72–77 JIN Hui, YU Miao, LONG Fangyu, et al. Impact of voltage type on the gas production characteristics of oil-paper insulation under discharge fault of column plate electrode[J]. Modern Electric Power, 2014, 31(4): 72–77 [5] 苑清, 齐波, 张书琦, 等. 交直流复合电压下油纸绝缘典型缺陷产气特性[J]. 电网技术, 2018, 42(9): 3093–3100 YUAN Qing, QI Bo, ZHANG Shuqi, et al. Gas generating characteristics of oil-paper defect models under composite AC-DC voltage[J]. Power System Technology, 2018, 42(9): 3093–3100 [6] 陈鑫, 郝建, 冯大伟, 等. 三元混合式绝缘油和矿物油的雷电冲击击穿及产气特性对比分析研究[J]. 电工技术学报, 2020, 35(4): 906–918 CHEN Xin, HAO Jian, FENG Dawei, et al. Comparative study on lightning impulse breakdown and gas production characteristics of three-element mixed insulation oil and mineral oil[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 906–918 [7] 魏振, 齐波, 左健, 等. 基于局部放电图像特征的换流变压器油纸绝缘缺陷诊断方法[J]. 电网技术, 2015, 39(4): 1160–1166 WEI Zhen, QI Bo, ZUO Jian, et al. A method to diagnose defects in oil-paper insulation of converter transformer based on image feature of partial discharge[J]. Power System Technology, 2015, 39(4): 1160–1166 [8] 陈义龙, 齐波, 李成榕, 等. 交直流复合电场下油纸绝缘界面电荷对沿面闪络电压的影响[J]. 电网技术, 2014, 38(4): 1070–1075 CHEN Yilong, QI Bo, LI Chengrong, et al. Impact of interfacial charge of oil-pressboard insulation on surface flashover voltage under compound AC-DC electric field[J]. Power System Technology, 2014, 38(4): 1070–1075 [9] 何志满, 李剑, 鲍连伟, 等. 交直流复合电压下油纸绝缘气隙局 部放电与产气特性分析(英文)[J]. 高电压技术, 2012, 38(8): 2091–2096 HE Zhiman, LI Jian, BAO Lianwei, et al. Characteristic analysis of partial discharges and dissolved gases generated cavity in oil-paper insulation under AC-DC combined voltages[J]. High Voltage Engineering, 2012, 38(8): 2091–2096 [10] 王伟, 薛阳, 程养春, 等. 变压器油纸绝缘沿面放电程度的诊断[J]. 高电压技术, 2011, 37(7): 1713–1718 WANG Wei, XUE Yang, CHENG Yangchun, et al. Diagnosis of severity degree for power transformer oil-pressboard insulation surface discharge[J]. High Voltage Engineering, 2011, 37(7): 1713–1718 [11] IEC Central Office. Mineral insulating oils electrical equipment - supervision and maintenance guidance: IEC 60422-2005 [S]. Geneva, Switzerland, 2005. [12] IEEE Std C57.129™. IEEE standard for general requirements and test code for oil-immersed HVDC converter transformers: IEEE Std C57.129™ —2008[S]. New York, USA, 2008. [13] MORAIS D R, ROLIM J G. A hybrid tool for detection of incipient faults in transformers based on the dissolved gas analysis of insulating oil[J]. IEEE Transactions on Power Delivery, 2006, 21(2): 673–680. [14] POLJAK M, BOJANIĆ B. Method for the reduction of in-service instrument transformer explosions[J]. European Transactions on Electrical Power, 2010, 20(7): 927–937. [15] 王纯洁, 王黎明, 梅红伟, 等. 三电极结构流注放电试验平台[J]. 高电压技术, 2019, 45(1): 103–108 WANG Chunjie, WANG Liming, MEI Hongwei, et al. Streamer discharge test platform with three-electrode structure[J]. High Voltage Engineering, 2019, 45(1): 103–108 [16] 白鹭, 李冠良, 杨成鹏等. 试验方法及电极布置形式对变压器油局部放电起始电压的影响[J]. 绝缘材料, 2021, 54(5): 85–91 BAI Lu, LI Guangliang, YANG Chengpeng, et al. Influence of test methods and electrode arrangement on partial discharge initiation voltage of transformer oil[J]. Insulating Materials, 2021, 54(5): 85–91 [17] HIKITA M, OHTSUKA S, MATSUMOTO S. Recent trend of the partial discharge measurement technique using the UHF electromagnetic wave detection method[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2(5): 504–509. [18] CHANDRASEKAR S, MONTANARI G C. Analysis of partial discharge characteristics of natural esters as dielectric fluid for electric power apparatus applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(3): 1251–1259. [19] SUSILO A, MUSLIM J, HIKITA M, et al. Comparative study of partial discharge characteristics and dissolved gas analysis on palm-based oil as insulating material[C]//The 2nd IEEE Conference on Power Engineering and Renewable Energy (ICPERE) 2014. Bali, Indonesia. IEEE, 2014: 232–236. [20] 欧阳吉庭, 张宇, 秦宇. 微放电及其应用[J]. 高电压技术, 2016, 42(3): 673–684 OUYANG Jiting, ZHANG Yu, QIN Yu. Micro-discharge and its applications[J]. High Voltage Engineering, 2016, 42(3): 673–684 [21] 郭昱均, 季启政, 何锋, 等. 平板型电极微腔放电的特性[J]. 高电压技术, 2019, 45(3): 820–825 GUO Yujun, JI Qizheng, HE Feng, et al. Discharge characteristic in micro-channel of plate electrodes[J]. High Voltage Engineering, 2019, 45(3): 820–825 [22] 王党树, 古东明, 栾哲哲, 等. 基于PIC/MCC法爆炸性气体环境下的微尺度放电特性[J]. 高电压技术, 2021, 47(3): 805–815 WANG Dangshu, GU Dongming, LUAN Zhezhe, et al. Micro-scale discharge characteristics in explosive gas environment based on PIC/MCC method[J]. High Voltage Engineering, 2021, 47(3): 805–815 [23] 冯启琨, 黄磊, 刘荻帆, 等. 针-板与棒-板电极结构在不同温度下的负电晕放电特性[J]. 高电压技术, 2021, 47(5): 1847–1856 FENG Qikun, HUANG Lei, LIU Difan, et al. Negative corona discharge characteristics of needle-plate and rod-plate structures under different temperatures[J]. High Voltage Engineering, 2021, 47(5): 1847–1856 [24] 胡琴, 何高辉, 彭华东, 等. 高湿条件下基于凝露分布模型的导线电晕起始电压预测[J]. 电工技术学报, 2018, 33(7): 1634–1640 HU Qin, HE Gaohui, PENG Huadong, et al. Prediction of conductor corona onset voltage based on condensation-distribution model under high humidity conditions[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1634–1640 [25] 姚水良, 章旭明, 陆豪. 低温等离子体净化挥发性有机物关键技术[J]. 高电压技术, 2020, 46(1): 342–350 YAO Shuiliang, ZHANG Xuming, LU Hao. Key technologies of purification for Volatile-organic-compounds using Non-thermal plasma[J]. High Voltage Engineering, 2020, 46(1): 342–350
|