[1] 陈龙龙, 徐飞, 魏晓光, 等. 大容量可控关断的直流输电用电流源型换流器研究综述[J]. 中国电力, 2021, 54(1): 25–36 CHEN Longlong, XU Fei, WEI Xiaoguang, et al. A review on large capacity controllable switching current source converter research[J]. Electric Power, 2021, 54(1): 25–36 [2] 刘旭斐, 吴琛, 张丹, 等. 考虑后效性的柔性直流输电黑启动方案评估方法[J]. 电力科学与技术学报, 2020, 35(6): 110–116 LIU Xufei, WU Chen, ZHANG Dan, et al. Evaluation method of black-start scheme with VSC-HVDC considering aftereffects[J]. Journal of Electric Power Science and Technology, 2020, 35(6): 110–116 [3] 刘卫东, 李奇南, 王轩, 等. 大规模海上风电柔性直流输电技术应用现状和展望[J]. 中国电力, 2020, 53(7): 55–71 LIU Weidong, LI Qinan, WANG Xuan, et al. Application status and prospect of VSC-HVDC technology for large-scale offshore wind farms[J]. Electric Power, 2020, 53(7): 55–71 [4] 唐英杰, 张哲任, 徐政. 基于二极管不控整流单元的远海风电低频交流送出方案[J]. 中国电力, 2020, 53(7): 44–54,168 TANG Yingjie, ZHANG Zheren, XU Zheng. Diode rectifier unit based LFAC transmission for offshore wind farm integration[J]. Electric Power, 2020, 53(7): 44–54,168 [5] 袁博, 王颖, 邵华, 等. 抑制特高压直流系统连续换相失败的非线性动态电流偏差控制[J]. 中国电力, 2021, 54(8): 75–82 YUAN Bo, WANG Ying, SHAO Hua, et al. A nonlinear dynamic current deviation control method for suppressing continuous commutation failures in UHVDC systems[J]. Electric Power, 2021, 54(8): 75–82 [6] 朱金涛, 辛业春. 柔性高压直流输电仿真技术研究方法综述[J]. 智慧电力, 2021, 49(3): 1–11, 94 ZHU Jintao, XIN Yechun. Review of research on simulation methods of VSC-HVDC transmission system[J]. Smart Power, 2021, 49(3): 1–11, 94 [7] 樊云龙, 任建文, 叶小晖, 等. 基于MMC的渝鄂直流背靠背联网工程控制策略研究[J]. 中国电力, 2019, 52(4): 96–103 FAN Yunlong, REN Jianwen, YE Xiaohui, et al. Study on control strategy of back to back MMC-HVDC connecting Chongqing and Hubei power grid[J]. Electric Power, 2019, 52(4): 96–103 [8] 陈葛松, 周孝信. 大型电力系统联网新技术: 变频变压器理论与应用[M]. 北京: 中国电力出版社, 2013. [9] 卢嘉豪. 可变频率变压器的电网故障穿越控制技术研究[D]. 广州: 广东工业大学, 2019. LU Jiahao. Research on grid-fault ride-through control strategy of variable frequency transformer[D]. Guangzhou: Guangdong University of Technology, 2019. [10] 陶鸿飞, 谢栋, 赵福林, 等. 含大规模风电并网电力系统的关键线路综合辨识[J]. 电力系统保护与控制, 2020, 48(6): 115–123 TAO Hongfei, XIE Dong, ZHAO Fulin, et al. Comprehensive identification of critical line in power systems with large-scale wind power integration[J]. Power System Protection and Control, 2020, 48(6): 115–123 [11] PIWKO, LARSEN. Variable frequency transformer - FACTS technology for asynchronous power transfer[C]//2005/2006 IEEE/PES Transmission and Distribution Conference and Exhibition. Dallas, TX, USA. IEEE, 2006: 1426–1428. [12] PRATICO E R, WEGNER C, LARSEN E V, et al. VFT operational overview - the Laredo project[C]//2007 IEEE Power Engineering Society General Meeting. Tampa, FL, USA. IEEE, 2007: 1–6. [13] PRATICO E R, WEGNER C, MARKEN P E, et al. First multi-channel VFT application - the Linden project[C]//IEEE PES T&D 2010. New Orleans, LA, USA. IEEE, 2010: 1–7. [14] 陈葛松, 周孝信, 宋瑞华. 基于变频变压器的电力系统低频振荡自适应阻尼控制器设计[J]. 中国电机工程学报, 2011, 31(16): 1–7 CHEN Gesong, ZHOU Xiaoxin, SONG Ruihua. Design of self-adaptive damping controller to low frequency power oscillation in interconnected power systems based on variable frequency transformer[J]. Proceedings of the CSEE, 2011, 31(16): 1–7 [15] 周攀, 伋玉聪, 戴朝波, 等. 变频变压器在半波长变频调谐的应用[J]. 电力系统及其自动化学报, 2019, 31(1): 71–76 ZHOU Pan, JI Yucong, DAI Chaobo, et al. Application of variable-frequency transformer to half-wavelength variable-frequency tuning[J]. Proceedings of the CSU-EPSA, 2019, 31(1): 71–76 [16] WANG L, CHEN L Y. Reduction of power fluctuations of a large-scale grid-connected offshore wind farm using a variable frequency transformer[J]. IEEE Transactions on Sustainable Energy, 2011, 2(3): 226–234. [17] WANG L, JAN S R, LI C N, et al. Analysis of an integrated offshore wind farm and seashore wave farm fed to a power grid through a variable frequency transformer[C]//2011 IEEE Power and Energy Society General Meeting. Detroit, MI, USA. IEEE, 2011: 1–7. [18] BAKHSH F I, KHATOD D K. Application of variable frequency transformer (VFT) for grid interconnection of PMSG based wind energy generation system[J]. Sustainable Energy Technologies and Assessments, 2014, 8: 172–180. [19] BAKHSH F I, KHATOD D K. A new synchronous generator based wind energy conversion system feeding an isolated load through variable frequency transformer[J]. Renewable Energy, 2016, 86: 106–116. [20] AMBATI B B, KANJIYA P, KHADKIKAR V, et al. A hierarchical control strategy with fault ride-through capability for variable frequency transformer[J]. IEEE Transactions on Energy Conversion, 2015, 30(1): 132–141. [21] CHEN S Z, LU J H, ZHANG G D, et al. Immunizing variable frequency transformer from dual-side asymmetrical grid faults via a single-converter-based novel control strategy[J]. IEEE Transactions on Power Delivery, 2020, 35(3): 1330–1338. [22] LU J H, YANG J C, BAI Q N, et al. Advanced configuration and control strategy of variable frequency transformer to minimize torque and power fluctuations under asymmetrical grid faults[C]//The Proceedings of the 9th Frontier Academic Forum of Electrical Engineering, 2021: 469-477. [23] 卢嘉豪. 一种可变频率变压器的转矩和功率波动抑制方法: CN111181177B [P]. 2020-04-05. [24] AMBATI B B, KHADKIKAR V. Variable frequency transformer configuration for decoupled active-reactive Powers transfer control[J]. IEEE Transactions on Energy Conversion, 2016, 31(3): 906–914. [25] MERKHOUF A, DOYON P, UPADHYAY S. Variable frequency transformer - concept and electromagnetic design evaluation[J]. IEEE Transactions on Energy Conversion, 2008, 23(4): 989–996.
|