[1] 广州市人民政府. 《广州市“十三五”能源消费总量控制工作方案》[R]. 广州: 广州市人民政府, 2017. [2] 广州市发展和改革委员会. 《广州市能源数据分析手册》[R]. 广州: 广州市发展和改革委员会, 2019. [3] 汪斌, 张欣欣, 嵇灵, 等. 北京市电力消耗驱动因素分析及需求预测[J]. 中国电力, 2018, 51(6): 178-184 WANG Bin, ZHANG Xinxin, JI Ling, et al. Driving factor analysis for the power consumption and load forecasting of Beijing city[J]. Electric Power, 2018, 51(6): 178-184 [4] 王凯军, 龙厚印, 吴良良, 等. 基于时间序列数据的用电结构变化对产业结构调整效应[J]. 电力与能源, 2016, 37(5): 533-537 WANG Kaijun, LONG Houyin, WU Liangliang, et al. Effects of power consumption structure change on industrial restructuring based on time series data[J]. Power & Energy, 2016, 37(5): 533-537 [5] 王效岳, 刘好明, 刘晓丽. 改进BP神经网络在城市工业用电量预测中的应用[J]. 自动化技术与应用, 2007, 26(12): 3-5, 11 WANG Xiaoyue, LIU Haoming, LIU Xiaoli. The application of a modified BP artificial neural network in the prediction of power consumption[J]. Techniques of Automation and Applications, 2007, 26(12): 3-5, 11 [6] 叶泽, 姚军, 吴永飞. 考虑用户需求的电价交叉补贴及社会福利计量研究[J]. 中国电力, 2019, 52(12): 113-122 YE Ze, YAO Jun, WU Yongfei, et al. Study on the cross subsidy of electricity price and the measurement of social welfare considering residential demand[J]. Electric Power, 2019, 52(12): 113-122 [7] 李岩春, 张化清, 林伟, 等. 调峰辅助服务与电量协调优化的日内安全约束经济调度[J]. 中国电力, 2018, 51(10): 95-102 LI Yanchun, ZHANG Huaqing, LIN Wei, et al. Intraday security-constrained economic dispatch with coordinative optimization of peak regulation ancillary service and unit energy[J]. Electric Power, 2018, 51(10): 95-102 [8] 张超, 左高, 腾振山, 等. 基于需求侧响应的配电网优化调度研究[J]. 智慧电力, 2020, 48(2): 53-57,91 ZHANG Chao, ZUO Gao, TENG Zhenshan, et al. Optimal dispatch of distribution network considering demand response[J]. Smart Power, 2020, 48(2): 53-57,91 [9] 林志坚,鲁迪,林锐涛,等. 基于k-means聚类和变分位鲁棒极限学习机的短期负荷预测方法[J]. 智慧电力, 2019, 47(3): 46-53 LIN Zhijian, LU Di, LIN Ruitao, et al. Short-term load forecasting method based on k-means clustering and varied quantile outlier robust extreme learning machine[J]. Smart Power, 2019, 47(3): 46-53 [10] 仇红剑, 李宝树, 林华德. 基于稀疏自回归时间序列方法的行业用电市场景气度分析[J]. 电子技术与软件工程, 2018(20): 160 [11] 商浩亮, 李丹丹, 郭琛绵, 等. 基于用户数量和装接容量的用电分析研究[J]. 电力勘测设计, 2019(1): 60-65, 77 SHANG Haoliang, LI Dandan, GUO Chenmian, et al. Electricity consumption analysis and research based on the number of users and capacity of installation[J]. Electric Power Survey & Design, 2019(1): 60-65, 77 [12] 刘俊, 赵宏炎, 刘嘉诚, 等. 基于协整-格兰杰因果检验和季节分解的中期负荷预测[J]. 电力系统自动化, 2019, 43(1): 73-80 LIU Jun, ZHAO Hongyan, LIU Jiacheng, et al. Medium-term load forecasting based on cointegration-granger causality test and seasonal decomposition[J]. Automation of Electric Power Systems, 2019, 43(1): 73-80 [13] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134 WANG Jinfeng, XU Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134 [14] 王伟, 阿里木·赛买提, 吉力力·阿不都外力. 基于地理探测器模型的中亚NDVI时空变化特征及其驱动因子分析[J]. 国土资源遥感, 2019, 31(4): 32-40 WANG Wei, ALIM Samat, JILILI Abuduwaili. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia[J]. Remote Sensing for Land & Resources, 2019, 31(4): 32-40 [15] WANG J F, LI X H, CHRISTAKOS G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127. [16] HUANG J, WANG J, BO Y, et al. Identification of health risks of hand, foot and mouth disease in China using the geographical detector technique[J]. International Journal of Environmental Research and Public Health, 2014, 11(3): 3407-3423. [17] WANG Y, WANG S J, LI G D, et al. Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique[J]. Applied Geography, 2017, 79: 26-36. [18] 湛东升, 张文忠, 余建辉, 等. 基于地理探测器的北京市居民宜居满意度影响机理[J]. 地理科学进展, 2015, 34(8): 966-975 ZHAN Dongsheng, ZHANG Wenzhong, YU Jianhui, et al. Analysis of influencing mechanism of residents' livability satisfaction in Beijing using geographical detector[J]. Progress in Geography, 2015, 34(8): 966-975 [19] 吕晨, 蓝修婷, 孙威. 地理探测器方法下北京市人口空间格局变化与自然因素的关系研究[J]. 自然资源学报, 2017, 32(8): 1385-1397 LÜ Chen, LAN Xiuting, SUN Wei. A study on the relationship between natural factors and population distribution in Beijing using geographical detector[J]. Journal of Natural Resources, 2017, 32(8): 1385-1397 [20] LUO W, JASIEWICZ J, STEPINSKI T, et al. Spatial association between dissection density and environmental factors over the entire conterminous United States[J]. Geophysical Research Letters, 2016, 43(2): 692-700. [21] ZHANG Y, ZHANG K C, AN Z S, et al. Quantification of driving factors on NDVI in oasis-desert ecotone using geographical detector method[J]. Journal of Mountain Science, 2019, 16(11): 2615-2624. [22] 周敏丹, 匡耀求, 云国梁. 基于地理探测器的广州市大气PM2.5浓度驱动因素分析[J]. 环境科学研究, 2020, 33(2): 271-279 ZHOU Mindan, KUANG Yaoqiu, YUN Guoliang. Analysis of driving factors of atmospheric PM2.5 concentration in Guangzhou city based on geo-detector[J]. Research of Environmental Sciences, 2020, 33(2): 271-279 [23] ZHOU C S, CHEN J, WANG S J. Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China's cities using spatial regression and the geographical detector technique[J]. Science of the Total Environment, 2018, 619/620: 436-445. [24] WU R N, ZHANG J Q, BAO Y H, et al. Geographical detector model for influencing factors of industrial sector carbon dioxide emissions in Inner Mongolia, China[J]. Sustainability, 2016, 8(2): 149. [25] 中国科学院广州能源所. 《粤港澳大湾区中长期经济社会发展趋势》[R]. 广州: 中国科学院广州能源所, 2019.
|