[1] 何悦. 中国能源供需预测模型及电能替代对策研究[D]. 北京:北京交通大学, 2018. HE Yue. Research on prediction model of energy supply-demand in China and electric energy substitution strategy[D]. Beijing:Beijing Jiaotong University, 2018. [2] 罗坤杰, 张颖慧. 基于BP神经网络预测模型能源管理系统研究与应用[J]. 工业控制计算机, 2019, 32(9):46-47, 49 LUO Kunjie, ZHANG Yinghui. Energy management system based on BP neural network prediction model[J]. Industrial Control Computer, 2019, 32(9):46-47, 49 [3] 姜洪殿, 董康银, 孙仁金, 等. 中国新能源消费预测及对策研究[J]. 可再生能源, 2016, 34(8):1196-1202 JIANG Hongdian, DONG Kangyin, SUN Renjin, et al. China's new energy:Current status, consumption forecasting and countermeasures[J]. Renewable Energy Resources, 2016, 34(8):1196-1202 [4] 姚劲. 中国新能源产业发展存在的问题及对策[J]. 科技创新与应用, 2019(30):114-115 [5] 王耀华, 焦冰琦, 张富强, 等. 计及高比例可再生能源运行特性的中长期电力发展分析[J]. 电力系统自动化, 2017, 41(21):9-16 WANG Yaohua, JIAO Bingqi, ZHANG Fuqiang, et al. Medium and long-term electric power development considering operating characteristics of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(21):9-16 [6] 丁咏梅, 拓明辉, 赵喜林. 基于向量自回归模型的能源消费结构影响因素分析[J]. 能源研究与管理, 2017(3):23-28 DING Yongmei, TUO Minghui, ZHAO Xilin. Econometrical analysis on the structure and influential factors of energy consume based on VAR model[J]. Energy Research and Management, 2017(3):23-28 [7] 穆海林, 王文超, 宁亚东, 等. 基于改进灰色模型的能源消费预测研究[J]. 大连理工大学学报, 2011, 51(4):493-497 MU Hailin, WANG Wenchao, NING Yadong, et al. Study of energy consumption prediction based on improved grey model[J]. Journal of Dalian University of Technology, 2011, 51(4):493-497 [8] 马彪. 基于最小二乘支持向量机的我国能源消费计算方法[J]. 工业技术经济, 2019, 38(6):139-144 MA Biao. China's energy consumption calculation method based on least squares support vector machine[J]. Journal of Industrial Technological Economics, 2019, 38(6):139-144 [9] 刘川来, 郭坤. BP神经网络预测技术在企业能源管理系统中的应用[J]. 青岛科技大学学报(自然科学版), 2013, 34(2):203-206 LIU Chuanlai, GUO Kun. The application of BP neural network prediction technology in enterprise energy management system[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2013, 34(2):203-206 [10] 谢小军, 邱云兰, 时凌. 基于ARIMA和BP神经网络组合模型的能源消费预测[J]. 数学的实践与认识, 2019, 49(10):292-298 XIE Xiaojun, QIU Yunlan, SHI Ling. Prediction of energy consumption based on ARIMA and BP neural network combined model[J]. Mathematics in Practice and Theory, 2019, 49(10):292-298 [11] 马法尧. 基于BP神经网络模型与ARMA模型的库存预测比较[J]. 统计与决策, 2014(19):34-37 [12] 张金锁, 冯雪, 邹绍辉. 基于趋势组合的我国煤炭需求预测模型研究[J]. 商业研究, 2014(6):51-56 ZHANG Jinsuo, FENG Xue, ZOU Shaohui. On China's coal demand forecast model based on the trend combination[J]. Commercial Research, 2014(6):51-56 [13] 桂梅, 刘莲花. 基于ARIMA模型对海南省社会消费品零售总额的预测[J]. 数学的实践与认识, 2017, 47(3):25-30 GUI Mei, LIU Lianhua. Prediction of the total retail sales of consumer goods based on the ARIMA model[J]. Mathematics in Practice and Theory, 2017, 47(3):25-30 [14] YE T. Stock forecasting method based on wavelet analysis and ARIMA-SVR model[C]//2017 3rd International Conference on Information Management (ICIM). Chengdu, China. IEEE, 2017:102-106. [15] 孔德钱, 张新燕, 童涛, 等. 基于差分进化算法与BP神经网络的变压器故障诊断[J]. 电测与仪表, 2020, 57(5):57-61 KONG Deqian, ZHANG Xinyan, TONG Tao, et al. Transformer fault diagnosis based on differential evolution algorithm and BP neural network[J]. Electrical Measurement & Instrumentation, 2020, 57(5):57-61 [16] 郝小会, 杨正军, 郝延, 等. 基于改进GM-ARMA组合模型的风电功率中长期预测方法[J]. 电工技术, 2021(7):11-13, 16 HAO Xiaohui, YANG Zhengjun, HAO Yan, et al. A medium and long term wind power prediction method based on improved GM-ARMA combination model[J]. Electric Engineering, 2021(7):11-13, 16 [17] SUN T, WU R J, CUI Y F, et al. Sequent extended Kalman filter capacity estimation method for lithium-ion batteries based on discrete battery aging model and support vector machine[J]. Journal of Energy Storage, 2021, 39:102594. [18] 张喆, 杨宏宇, 高新亭, 等. 大数据环境下基于BPNN模型的配电网规划适应性评价方法研究[J]. 供用电, 2021, 38(5):56-63, 88 ZHANG Zhe, YANG Hongyu, GAO Xinting, et al. Research on evaluation method of distribution network planning scheme adaptability based on BPNN model[J]. Distribution & Utilization, 2021, 38(5):56-63, 88 [19] 陈春霞, 孙祥娥. 基于双变异策略差分进化算法的模糊PI参数整定[J]. 武汉科技大学学报, 2020, 43(3):219-223 CHEN Chunxia, SUN Xiang'e. Parameter tuning for fuzzy PI controller based on differential evolution algorithm with double mutation strategies[J]. Journal of Wuhan University of Science and Technology, 2020, 43(3):219-223 [20] 贾时, 梁晓丹, 何茂伟, 等. 一种新的双种群多变异差分与粒子群混合算法[J]. 计算机应用研究, 2020, 37(增刊2):44-46 JIA Shi, LIANG Xiaodan, HE Maowei, et al. Novel hybrid algorithm based on particle swarm optimization and dual population multiple mutation differential evolution[J]. Application Research of Computers, 2020, 37(S2):44-46
|