[1] FABIANI D, MONTANARI G C, LAURENT C, et al. Polymeric HVDC cable design and space charge accumulation. part 1: insulation/semicon interface[J]. IEEE Electrical Insulation Magazine, 2007, 23(6): 11–19. [2] 韩炜炜. 柔性直流输电技术的现状及应用前景分析[J]. 电子测试, 2018(1): 109–110 HAN Weiwei. Present situation and application prospect analysis of flexible HVDC technology[J]. Electronic Test, 2018(1): 109–110 [3] 陈士军. 直流输电的优势与前景[J]. 水电站设计, 2003, 19(3): 78–79 CHEN Shijun. Advantages and prospects of direct current transmission[J]. Design of Hydroelectric Power Station, 2003, 19(3): 78–79 [4] 刘英, 曹晓珑, 何子兰, 等. 现役交流XLPE电缆配电线路改为直流运行的技术方案及实例分析[J]. 中国电机工程学报, 2016, 36(1): 96–103 LIU Ying, CAO Xiaolong, HE Zilan, et al. Technical scheme and case study of the uprating renovation of existing XLPE cables from AC distribution system to DC operation[J]. Proceedings of the CSEE, 2016, 36(1): 96–103 [5] 许烽, 徐政. 一种适用于交流线路改造成直流的扩展式双极直流输电结构[J]. 中国电机工程学报, 2014, 34(33): 5827–5835 XU Feng, XU Zheng. An extended bipole HVDC structure with three wires for conversion of AC lines to HVDC[J]. Proceedings of the CSEE, 2014, 34(33): 5827–5835 [6] 罗俊华, 邱毓昌, 杨黎明. 10 kV及以上电力电缆运行故障统计分析[J]. 高电压技术, 2003, 29(6): 14–16 LUO Junhua, QIU Yuchang, YANG Liming. Operation fault analysis of CLPE power cable above 10 kV[J]. High Voltage Engineering, 2003, 29(6): 14–16 [7] 于竞哲, 苏宜靖, 周浩, 等. 10 kV交流XLPE电缆改为直流运行的温度场和电场仿真分析[J]. 高电压技术, 2017, 43(11): 3653–3660 YU Jingzhe, SU Yijing, ZHOU Hao, et al. Simulation analysis of temperature field and electric field for 10 kV AC XLPE cable in DC operation[J]. High Voltage Engineering, 2017, 43(11): 3653–3660 [8] ROGTI F, MEKHALDI A, LAURENT C. Space charge behavior at physical interfaces in cross-linked polyethylene under DC field[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(5): 1478–1485. [9] 严有祥, 朱婷, 王蕾. 基于有限元法对±320 kV直流XLPE电缆中间接头电场与空间电荷的仿真计算[J]. 高电压技术, 2017, 43(11): 3591–3598 YAN Youxiang, ZHU Ting, WANG Lei. Simulation calculation of electric field and space charge in the joint of DC ±320 kV XLPE cable based on finite element method[J]. High Voltage Engineering, 2017, 43(11): 3591–3598 [10] FROBIN S J, NIEDIK C F, FREYE C, et al. A generic approach for HVDC cable accessories modelling[C]//2018 IEEE 2nd International Conference on Dielectrics (ICD). Budapest, Hungary. IEEE, 2018: 1–6. [11] DELPINO S, FABIANI D, MONTANARI G C, et al. Feature article - Polymeric HVDC cable design and space charge accumulation. Part 2: insulation interfaces[J]. IEEE Electrical Insulation Magazine, 2008, 24(1): 14–24. [12] 韩宝忠, 傅明利, 李春阳, 等. 硅橡胶电导特性对XLPE绝缘高压直流电缆终端电场分布的影响[J]. 高电压技术, 2014, 40(9): 2627–2634 HAN Baozhong, FU Mingli, LI Chunyang, et al. Effect of silicone rubber's electric conductance characteristic on electric field distribution inside XLPE insulated HVDC cable termination[J]. High Voltage Engineering, 2014, 40(9): 2627–2634 [13] 兰莉. 温度对聚合物绝缘中空间电荷行为的影响[D]. 上海: 上海交通大学, 2015. LAN Li. Effect of temperature on space charge distribution in polymer insulation[D]. Shanghai: Shanghai Jiao Tong University, 2015. [14] 何淼, George Chen. 描述高压直流电缆绝缘材料电导率的公式比较[J]. 南方电网技术, 2016, 10(4): 78–84 HE Miao, CHEN G. Comparison between electrical conductivity equations in describing HVDC cable insulating materials[J]. Southern Power System Technology, 2016, 10(4): 78–84 [15] 陈庆国, 秦艳军, 尚南强, 等. 温度对高压直流电缆中间接头内电场分布的影响分析[J]. 高电压技术, 2014, 40(9): 2619–2626 CHEN Qingguo, QIN Yanjun, SHANG Nanqiang, et al. Influence analysis of temperature on electric-field distribution in HVDC cable joint[J]. High Voltage Engineering, 2014, 40(9): 2619–2626 [16] 朱婷. ±320 kV直流输电电缆附件关键技术研究[D]. 厦门: 厦门理工学院, 2016. ZHU Ting. Key technology research on cable accessories of ±320 kV DC transmission[D]. Xiamen: Xiamen University of Technology, 2016. [17] FABIANI D, MONTANARI G C, LAURENT C, et al. HVDC cable design and space charge accumulation. Part 3: Effect of temperature gradient [feature article][J]. IEEE Electrical Insulation Magazine, 2008, 24(2): 5–14. [18] Electric cables — calculation of the current rating — Part 2-1: thermal resistance- calculation of thermal resistance: IEC 60287-2-1[S]. 2015. [19] 王霞, 刘霞, 郑明波, 等. 温度梯度场下硅橡胶与交联聚乙烯界面上空间电荷的形成机理[J]. 高电压技术, 2011, 37(10): 2424–2430 WANG Xia, LIU Xia, ZHENG Mingbo, et al. Formation mechanism of space charge accumulation at SR and XLPE interface under temperature gradient[J]. High Voltage Engineering, 2011, 37(10): 2424–2430 [20] 马琳, 马连湘, 何燕. 改性碳纳米管对三元乙丙橡胶导热性能和物理性能的影响[J]. 橡胶工业, 2014, 61(10): 600–604 MA Lin, MA Lianxiang, HE Yan. Effect of modified carbon nanotubes on thermal conductivity and physical property of EPDM[J]. China Rubber Industry, 2014, 61(10): 600–604 [21] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 52-53.
|