中国电力 ›› 2024, Vol. 57 ›› Issue (3): 126-134.DOI: 10.11930/j.issn.1004-9649.202310071

• 电网 • 上一篇    下一篇

绝缘隔板对空气间隙放电光谱特性的影响及电荷演变机理

魏艳慧1(), 张连康1, 许逢源1, 韩颜泽1, 朱远惟2, 李国倡1()   

  1. 1. 青岛科技大学 先进电工材料研究院,山东 青岛 266042
    2. 电工材料电气绝缘全国重点实验室(西安交通大学),陕西 西安 710049
  • 收稿日期:2023-10-25 出版日期:2024-03-28 发布日期:2024-03-26
  • 作者简介:魏艳慧(1986—),女,博士,副教授,从事介电材料中的空间电荷现象、电-热老化模型及寿命评估研究,E-mail:weiyhui@126.com
    李国倡(1985—),男,通信作者,博士,教授,从事电力设备绝缘技术与绝缘材料、多场耦合下绝缘部件电场仿真与结构优化研究,E-mail:Lgc@qust.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51907095);山东省高等学校青创支持计划项目(2021KJ023)。

Impacts of Insulation Barrier on Air Gap Discharge Spectral Characteristics and the Charge Evolution Mechanism

Yanhui WEI1(), Liankang ZHANG1, Fengyuan XU1, Yanze HAN1, Yuanwei ZHU2, Guochang LI1()   

  1. 1. Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao 266042, China
    2. National Key Laboratory of Electrical Materials and Electrical Insulation(Xi'an Jiaotong University), Xi'an 710049, China
  • Received:2023-10-25 Online:2024-03-28 Published:2024-03-26
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51907095) and Youth Innovation Technology Support Plan of Shandong Province Universities (No.2021KJ023).

摘要:

在空间有限的开关柜等电力设备中,开展棒-板间隙放电的放电规律以及检测方法的研究具有重要意义。实验探讨了“棒电极-绝缘隔板-接地电极”系统中不同隔板材料、隔板位置时放电光谱的分布规律;采用表面电位计,计算分析了放电后绝缘隔板表面陷阱能级分布特征;通过建立等尺寸绝缘系统仿真模型,分析绝缘隔板的引入对电子密度、电场分布的影响,揭示放电机理。实验研究表明,绝缘隔板的引入,可以显著提高系统的击穿电压,最高可提升1.6倍。不同隔板材料对应的放电光谱特征信息有所不同,环氧树脂隔板的放电光谱强度整体较大,但在波段309.25 nm、589.05 nm处聚酯板的光谱强度略大于环氧树脂。此外,电极间距对放电光谱具有较大的影响。隔板材料表面存在明显的残余电荷,环氧树脂的电荷积聚高于聚酯板,对击穿电压的影响较大。仿真结果显示,隔板材料的改变会影响击穿电压的幅值,同时会改变微观粒子的物理运动,从而改变放电光谱。研究成果可为电力设备光谱放电监测和绝缘状态评估提供理论和实验指导。

关键词: 空气间隙, 绝缘隔板, 光谱特性, 残余电荷, 仿真分析

Abstract:

Investigating the discharge patterns and detection methodologies for rod-to-plate gap discharges within spatially constrained power equipment, such as switchgear, is critically important. The study delved into the distribution of discharge spectra within a "rod electrode-insulating barrier-ground electrode" system across various barrier materials and positions. Utilizing a surface potentiometer, the study analyzed the distribution characteristics of trap energy levels on the insulating barrier's surface post-discharge. A simulation model of an insulating system of identical dimensions was established to examine the influence of introducing an insulating barrier on electron density and electric field distribution, thereby elucidating the discharge mechanism. The research findings indicate that incorporating an insulating barrier significantly elevates the system's breakdown voltage, with a potential increase of up to 1.6 times. Discharge spectral characteristics vary with the barrier material; while epoxy resin barriers exhibit higher overall discharge spectral intensities, polyester boards show slightly greater intensities at wavelengths of 309.25 nm and 589.05 nm. Moreover, the spacing between electrodes markedly affects the discharge spectrum, with a clear presence of residual charge on the barrier surfaces. Epoxy resin demonstrates higher charge accumulation compared to polyester, impacting breakdown voltage more substantially. Simulation results further reveal that alterations in barrier materials not only affect the amplitude of the breakdown voltage but also modify the physical motion of micro-particles, consequently altering the discharge spectrum. This research provides theoretical and practical guidance for spectral discharge monitoring and insulation condition assessment within electrical equipment.

Key words: air gap, insulation barrier, spectral characteristics, residual charge, simulation