中国电力 ›› 2019, Vol. 52 ›› Issue (10): 1-10.DOI: 10.11930/j.issn.1004-9649.201808093

• 泛在电力物联网——信息与通信安全防护 • 上一篇    下一篇

特定攻击场景下源网荷系统恶意攻击关联分析方法

章锐1, 费稼轩1, 石聪聪1, 张小建1, 黄秀丽1, 王琦2   

  1. 1. 全球能源互联网研究院有限公司 信息网络安全国网重点实验室, 江苏 南京 210003;
    2. 东南大学 电气工程学院, 江苏 南京 210096
  • 收稿日期:2018-08-17 修回日期:2019-04-10 出版日期:2019-10-05 发布日期:2019-10-12
  • 作者简介:章锐(1991-),男,工程师,从事信息驱动的电网安全稳定评估,电力信息安全研究工作,E-mail:anhui zhangrui2015@126.com;费稼轩(1984-),男,高级工程师,从事电力信息安全研究,E-mail:feijiaxuan@geiri.sgcc.com.cn;石聪聪(1982-),男,高级工程师,从事电力信息安全研究,E-mail:shicongcong@geiri.sgcc.com.cn;张小建(1969-),男,高级工程师,从事电力信息安全研究,E-mail:zhangxiaojian@geiri.sgcc.com.cn;黄秀丽(1979-),女,高级工程师,从事电力信息安全研究,E-mail:huangxiuli@geiri.sgcc.com.cn;王琦(1989-),男,讲师,从事电网信息物理研究,E-mail:wangqi@seu.edu.cn
  • 基金资助:
    国家电网公司科技项目(大规模源网荷友好互动系统恶意攻击机理及攻击精准监测技术研究,SGRIXTKJ[2017]402)。

Malicious Attack Correlation Analysis Method of Source-Grid-Load System under Specific Attack Scenarios

ZHANG Rui1, FEI Jiaxuan1, SHI Congcong1, ZHANG Xiaojian1, HUANG Xiuli1, WANG Qi2   

  1. 1. State Grid Key Laboratory of Information & Network Security, Global Energy Interconnection Research Institute Co., Ltd., Nanjing 210003, China;
    2. School of Electrical Engineering, Southeast University, Nanjing 210096, China
  • Received:2018-08-17 Revised:2019-04-10 Online:2019-10-05 Published:2019-10-12
  • Supported by:
    This work is supported by the Science and Technology Project of SGCC (Research on Malicious Attack Mechanism and Precise Attack Monitoring Techniques for Large-Scale Interactive System with Source-Grid-Load Friendly Coordination, No. SGRIXTKJ[2017] 402).

摘要: 充分利用网络信息与电气侧信息,提高恶意攻击事件识别的自适应能力和自动化程度是电网应对网络安全威胁的关键。提出了特定攻击场景下源网荷系统恶意攻击关联分析方法,首先,构建基于属性的多源事件融合模型,对信息侧与电气侧异常事件进行多源数据融合处理。其次,基于神经网络模型对融合后的事件进行训练,按照攻击场景分类。再次,结合电气侧异常事件,对遗传算法的初始化方案、选择算子、交叉遗传概率进行改进,基于分类结果,自动生成针对不同攻击场景的关联规则。接下来,通过时序、业务逻辑以及IP分类逐步减少待匹配事件数量,基于向量计算提高事件匹配速度,提出基于时序与业务逻辑的关联匹配算法,实现关联规则的高速匹配。最后,在源网荷仿真实验系统上验证了方法的有效性及适用性。该方法综合利用信息侧与电气侧异常事件,进一步提高对网络攻击的辨识精度,自动完成事件的分类和关联规则的生成,具有较大的工程应用价值。

关键词: 源网荷系统, 恶意攻击, 关联规则, 改进遗传算法, 匹配算法

Abstract: The key for the power grid to deal with cyber security threats is to make full use of cyber and electrical information to improve the self-adaptation ability and automation for identification of malicious attack event. In this paper, a malicious attack correlation analysis method of source-grid-load system under specific attack scenarios is proposed. Firstly, an attribute-based multi-source event fusion model is constructed to perform multi-source data fusion processing on abnormal events of cyber layer and electrical layer. And then, based on the neural network model, the fused events are trained and classified according to the attack scenarios. Thirdly, combined with electrical abnormal events, the genetic algorithm's initialization scheme, the selection operator and cross genetic probability are improved. The correlation rules for different attack scenarios are automatically generated based on the classification results. Fourthly, the number of events to be matched is gradually reduced through timing, business logic and IP classification, and the speed of event matching is improved based on vector calculation. A timing- and business logic-based correlation matching algorithm is proposed to realize the high-speed matching of correlation rules. Finally, the effectiveness and applicability of the proposed method is verified in the source-grid-load simulation experiment system. The proposed method utilizes comprehensively the abnormal events of the cyber layer and electrical layer to further improve the identification accuracy of cyber attacks, and automatically realizes the events classification and correlation rule generation, showing great potential for engineering application.

Key words: source-grid-load system, malicious attack, correlation rules, improved genetic algorithm, matching algorithm

中图分类号: