[1] KRAWEC W O. Restricted attacks on semi-quantum key distribution protocols[J]. Quantum Information Processing, 2014, 13(11):2417-2436. [2] SHAARI J S. No orthogonal unitary in two-way quantum key distribution[J]. Physics Letters A, 2014, 378(11-12):863-868. [3] MA X, RAZAVI M. Alternative schemes for measurement-device-independent quantum key distribution[J]. Physical Review A, 2012, 86(6):3818-3821. [4] SASAKI T, YAMAMOTO Y, KOASHI M.:Practical quantum key distribution protocol without monitoring signal disturbance[J]. Nature, 2014, 509(5):475-478. [5] WANG T, YU S, ZHANG Y C, et al. Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier[J]. Physics Letters A, 2014, 378(38/39):2808-2812. [6] ALLATI A E, BAZ M E. Quantum key distribution using optical coherent states via amplitude damping[J]. Optical & Quantum Electronics, 2015, 47(5):1035-1046. [7] SCOTT C, NOWAK R. A Nyman-Pearson approach to statistical learning[J]. IEEE Transactions on Information Theory, 2005, 51(11):3806-3819. [8] YANG Y G, XIA J, SHI L, et al. Comment on "quantum secure direct communication with authentication expansion using single photons"[J]. International Journal of Theoretical Physics, 2012, 51(12):3681-3687. [9] BORELLI L F M, AGUIAR L S, ROVERSI J A, et al. Quantum key distribution using continuous-variable non-Gaussian states[J]. Quantum Information Processing, 2016, 15(2):893-904. [10] HUANG P, HE G, FANG J, et al. Performance improvement of continuous-variable quantum key distribution via photon subtraction[J]. Physical Review A, 2013, 87(1):530-537. [11] QUYEN D X, ZHESHEN Z, VOSS P L. A 24 km fiber-based discretely signaled continuous variable quantum key distribution system[J]. Optics Express, 2009, 17(26):24244-24249. [12] JOUGUET P. Experimental demonstration of long-distance continuous-variable quantum key distribution[J]. Nature Photonics, 2013, 7(5):378-381. [13] GARCIA E, MENDIETA F J, LOPEZ J A, et al. Phase-Locked homodyne measurement of quasiprobability Q function and detection of information-carrying weak-coherent states[J]. Microwave & Optical Technology Letters, 2013, 55(10):2431-2437. [14] LI C Y, MIAO R H, HE G Q, et al. Performance improvement of two-way quantum key distribution by using a heralded noiseless amplifier[J]. International Journal of Theoretical Physics, 2015:1-13. [15] ZHU Z C, HU A Q, FU A M. Two new controlled not gate based quantum secret sharing protocols without entanglement attenuation[J]. International Journal of Theoretical Physics, 2016, 55(5):2342-2353. [16] HUANG D, LIN D, WANG C, et al. Continuous-variable quantum key distribution with 1 Mbps secure key rate[J]. Optics Express, 2015, 23(13):17511-17519. [17] WANG C, HUANG D, HUANG P, et al. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel[J]. Scientific Reports, 2015, 5(1):14607. [18] LV G, HUANG D, GUO Y. Source-manipulating wavelength-dependent continuous-variable quantum key distribution with heterodyne detectors[J]. International Journal of Theoretical Physics, 2016, 55(5):2417-2427. [19] HUANG J Z, WEEDBROOK C, YIN Z Q, et al. Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack[J]. Physical Review A, 2013, 87(6):1993-2001. [20] HE X L, YANG C P. Deterministic transfer of multiunit GHZ entangled states and quantum secret sharing between different cavities[J]. Quantum Information Processing, 2015, 14(12):4461-4474. [21] YIN A, FU F. Eavesdropping on semi-quantum secret sharing scheme of specific bits[J]. International Journal of Theoretical Physics, 2016, 55(9):4027-4035. |