[1] 中国环境科学研究院. 火电厂大气污染物排放标准:GB13223—2011[S]. 北京:中国环境科学出版社, 2012.
[2] 环境保护部, 国家发展和改革委员会, 国家能源局. 关于印发《全面实施燃煤电厂超低排放和节能改造工作方案》的通知[A]. 2015.
[3] 刘庆威, 果志明, 陆叶, 等.旋流锅炉低氮燃烧器改造后运行情况分析[J]. 中国电力, 2017, 50(8):63-67, 112.LIU Qingwei, GUO Zhiming, LU Ye, et al. Research on operation of swirl-opposed firing boiler retrofitted for low NOx emission[J]. Electric Power, 2017, 50(8):63-67, 112.
[4] 靳军. 墙式切圆燃烧冲蚀磨损与高温腐蚀的耦合作用研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
[5] 赵虹, 魏勇. 燃煤锅炉水冷壁烟侧高温腐蚀的机理及影响因素[J]. 动力工程, 2002, 22(2):1700-1704.ZHAO Hong, WEI Yong. Discussion on the mechanisms and factors of the gas side high temperature corrosion in water wall tubes for coal fired boilers[J]. Power Engineering, 2002, 22(2):1700-1704.
[6] 李琰, 鲁金涛, 杨珍, 等. 燃煤锅炉烟气侧高温腐蚀研究进展[J]. 腐蚀科学与防护技术, 2016, 28(2):167-172.LI Yan, LU Jintao, YANG Zhen, et al. Review of high temperature corrosion of flue gas side for coal-fired boiler[J]. Corrosion Science and Protection Technology, 2016, 28(2):167-172.
[7] 丁力, 陈曲进. 锅炉高温腐蚀分析与技术措施[J]. 四川电力技术, 2007, 30(1):67-70.DING Li, CHEN Qujin. Analysis and technical measure of high-temperature corrosion in boiler[J]. Sichuan Electric Power Technology, 2007, 30(1):67-70.
[8] 郭鲁阳, 许华波. 1025 t/h锅炉水冷壁高温腐蚀分析及预防[J]. 华东电力, 2004, 32(4):46-48.GUO Luyang, XU Huabo. Analysis on high temperature corrosion of 1025 t/h boiler water wall and its prevention[J]. East China Electric Power, 2004, 32(4):46-48.
[9] 陈敏生, 廖晓春. 600 MW超临界锅炉防止高温腐蚀技术改造和运行调整[J]. 中国电力, 2014, 47(4):56-59, 117.CHEN Minsheng, LIAO Xiaochun. The retrofit of high-temperature corrosion prevention and operation adjustment for 600-MW supercritical boiler[J]. Electric Power, 2014, 47(4):56-59, 117.
[10] 张基标. 超超临界对冲燃烧锅炉高温腐蚀研究[J]. 浙江电力, 2011, 30(4):4-6.ZHANG Jibiao. Research on high-temperature corrosion of ultra-supercritical opposed firing boiler[J]. Zhejiang Electric Power, 2011, 30(4):4-6.
[11] 贺桂林, 张晓宇. 600 MW锅炉低氮燃烧器改造炉膛高温腐蚀分析[J]. 中国电力, 2017, 50(10):110-115.HE Guilin, ZHANG Xiaoyu. Analysis on high temperature corrosion of a 600 MW boiler furnace after low NOx combustor retrofitting[J]. Electric Power, 2017, 50(10):110-115.
[12] DUDZIAK T, HUSSAIN T, SIMMS N J, et al. Fireside corrosion degradation of ferritic alloys at 600℃ in oxy-fired conditions[J]. Corrosion Science, 2014, 79:184-191.
[13] LI L, DUAN Y, CAO Y, et al. Field corrosion tests for a low chromium steel carried out at superheater area of a utility boiler with three coals containing different chlorine contents[J]. Fuel Processing Technology, 2007, 88(4):387-392.
[14] 贾宏禄. 锅炉低氮燃烧改造与高温腐蚀控制分析[J]. 电力科学与工程, 2015, 31(6):68-73.JIA Honglu. Analysis of low NOx combustion system retrofit and high temperature corrosion control[J]. Electric Power Science and Engineering, 2015, 31(6):68-73.
[15] 张萍, 鲁常春. 配风对煤粉炉水冷壁高温腐蚀影响分析及措施[J]. 齐鲁石油化工, 2014, 42(3):240-243.ZHANG Ping, LU Changchun. Analysis and measures on influence of air distribution on high temperature corrosion of water cooled wall in coal power boiler[J]. Qilu Petrochemical Technology, 2014, 42(3):240-243.
[16] 翁善勇, 凌柏林. 锅炉水冷壁高温腐蚀气氛监测装置:201210087830.3[P]. 2012-07-25.
[17] 谭厚章, 刘海玉, 熊小鹤, 等. 一种在线监测锅炉水冷壁高温腐蚀的装置和方法:2008102365508[P]. 2009-06-03.
[18] 赵虹, 杨建国, 冯国华, 等. 煤粉锅炉水冷壁烟气组分分布矩阵式检测装置及方法:2012100684558[P]. 2012-08-22.
[19] 焦庆丰, 姚斌, 程刚. 大型电站锅炉水冷壁高温腐蚀程度判别方法:021398046[P]. 2004-06-23.
[20] 赵虹, 杨建国, 冯国华. 基于烟气成分的煤粉锅炉水冷壁高温腐蚀倾向性分析方法:2012100684670[P]. 2012-07-18.
[21] 周长海, 马海涛, 王来. 外加应力下合金高温氧化膜的生长及其失效愈合研究现状[J]. 腐蚀科学与防护技术, 2010, 22(6):558-562.ZHOU Changhai, MA Haitao, WANG Lai. A review on oxide-scale growth, failure and its healing behavior during high temperature oxidation of alloys[J]. Corrosion Science and Protection Technology, 2010, 22(6):558-562.
[22] 黄军林. 高温受热管蒸汽侧金属氧化膜失效问题研究[D]. 南京:东南大学, 2015.
[23] 张莉娜, 陈靓瑜. 锆合金氧化膜中横向裂纹产生影响因素的研究综述[J]. 中国有色金属学报, 2017, 27(10):2091-2097.ZHANG Lina, CHEN Liangyu. Review on influencing factors of lateral cracks formation in oxide of zirconium alloys[J]. The Chinese Journal of Nonferrous Metals. 2017, 27(10):2091-2097. |