[1] XIE J, WEI X, LU Y, et al . Emission-constrained optimal generation scheduling incorporating equity principles[J]. IET Generation, Transmission & Distribution, 2010, 4(2): 201-210. [2] 喻洁,季晓明,夏安邦. 基于节能环保的水火电多目标调度策略[J]. 电力系统保护与控制,2009,37(1):24-27. YU Jie, JI Xiaoming, XIA Anbang. Multi-objective hydro-thermal dispatch based on energy conservation and environmental protection[J]. Power System Protection and Control, 2009, 37(1):24-27. [3] 谭忠富,陈广娟,赵建保,等. 以节能调度为导向的发电侧与售电侧峰谷分时电价联合优化模型[J]. 中国电机工程学报,2009, 29(1):55-62. TAN Zhongfu, CHEN Guangjuan, ZHAO Jianbao, et al . Optimization model for designing peak-valley time-of-use power price of generation side and sale side at the direction of energy conservation dispatch[J]. Proceedings of the CSEE, 2009, 29(1):55-62. [4] 韩冬,蔡兴国. 综合环境保护及峰谷电价的水火电短期优化调度[J]. 电网技术,2009,33(14):78-83. HAN Dong, CAI Xingguo. Short-term scheduling of hydrothermal power system considering environmental protection and time-of- use price [J]. Power System Technology, 2009, 33(14): 78-83. [5] 吴杰康,康力. 基于模糊机会约束规划的水火电力系统多目标随机调度模型模型[J]. 中国电机工程学报,2011,31(25):26-34. WU Jiekang, KANG Li. Multi-objective stochastic scheduling models for hydrothermal plants based on fuzzy chance constrained programming [J]. Proceedings of the CSEE, 2011, 31(25): 26-34. [6] ABILA N. Biofuels adoption in nigeria: a preliminary review of feedstock and fuel production potentials [J]. Management of Environment Quality, 2010, 21(6): 785-795. [7] 刘殿海,杨勇平,杨昆,等. 计及环境成本的火电机组供电成本研究[J]. 中国电力,2005,38(9):24-28. LIU Dianhai, YANG Yongping, YANG Kun, et al . Research on the production cost of coal-fired power generating unit with consideration of environmental costs[J]. Electric Power, 2005, 38(9): 24-28. [8] 杨勇平,杨志平,徐刚,等. 中国火力发电能耗状况及展望[J].中国电机工程学报,2013,33(23):1-11. YANG Yongping, YANG Zhiping, XU Gang, et al . Situation and prospect of energy consumption for china’s thermal power generation [J]. Proceedings of the CSEE, 2013, 33(23): 1-11. [9] 康重庆,陈启鑫,夏清. 低碳电力技术的研究展望[J]. 电网技术,2009,33(2):1-7. KANG Chongqing, CHEN Qixin, XIA Qing. Prospects of low- carbon electricity [J]. Power System Technology, 2009, 33(2): 1-7. [10] 谭青,张彦琦,王吉翔,等. 汽包锅炉实现低负荷脱硝的烟气升温系统[J]. 上海节能,2013(10):40-44. TAN Qing, ZHANG Yanqi, WANG Jixiang, et al . A gas temperature rising system of drum boiler denitration achieve under low load[J]. Shanghai Energy Conservation, 2013(10): 40-44. [11] 叶新福. 国产300 MW机组深度调峰运行的可靠性和经济性研究[J]. 中国电力,1999,32(9):24-26. YE Xinfu. Study on reliability and economics of indigenous 300 MW generating units under deep cyclic operation[J]. Electric Power, 1999, 32(9): 24-26. [12] HAO Z, YAO Z, LI S, et al . The contribution of double-fed wind farms to transient voltage and damping of power grids[J].Technicki Vjesnik, 22, 2015, 22(1): 43-49. [13] 武春锦,吕武华,梅毅,等. 湿法烟气脱硫技术及运行经济性分析[J]. 化工进展,2015,34(12):4368-4374. WU Chunjin, LV Wuhua, MEI Yi, et al . Application and running economic analysis of wet flue gas desulfurization technology[J].Chemical Industry and Engineering Progress, 2015, 34(12): 4368-4370. [14] 顾卫荣,周明吉,马薇. 燃煤烟气脱硝技术的研究进展[J]. 化工进展,2012,31(9)2084-2092. GU Weirong, ZHOU Mingji, MA Wei. Technology status and analysis on coal-fired flue gas denitrification[J]. Chemical Industry and Engineering Progress, 2012, 31(9): 2084-2092. |