[1] 傅闯,饶宏,黎小林,等. 直流融冰装置的研制与应用[J]. 电力系统自动化,2009,33(11):53-56. FU Chuang, RAO Hong, LI Xiaolin, et al. Development and application of DC deicer [J]. Automation of Electric Power System, 2009, 33(11): 53-56. [2] 范瑞祥,贺之渊,周细文,等. 基于IGBT 的移动式多用途直流电源及其融冰调试[J]. 电力自动化设备,2010,30(32):111-115. FAN Ruixiang, HE Zhiyuan, ZHOU Xiwen, et al. Displaceable multi-purpose DC source and deicing test[J]. Electric Power Automation Equipment, 2010, 30(32): 111-115. [3] 冯炜,吕宏水,吴维宁,等. 500 kV 线路可移动直流融冰装置的研制和实现[J]. 电力电子技术,2009,43(10):19-21. FENG Wei, LV Hongshui, WU Weining, et al. Development and manufacture of movable ice-melting equipment for 500 kV transmission line [J]. Power Electronics, 2009, 43(10): 19-21. [4] 胡建华,司明起,刘国恩. 12脉波直流融冰兼SVC系统的实现[J]. 电气技术,2013,16(3):78-81. HU Jianhua, SI Mingqi, LIU Guoen. Realization of the DC ice-melting and SVC system with 12 pulse wave[J]. Electrical Engineering, 2013, 16(3): 78-81. [5] 郭捷,江道灼,李海翔,等. 可控整流器型直流融冰兼SVC 装置在SVC 模式下控制域解析[J]. 电力系统保护与控制,2010, 38(14):93-97. GUO Jie, JIANG Daozhuo, LI Haixiang, et al. Control domain analysis of controlled rectifier type SVC/DC-deicer on SVC mode[J]. Power System Protection and Control, 2010, 38(14): 93-97. [6] 杨晓峰,孙浩,支刚,等. 模块组合型多电平变换器的控制策略[J]. 北京交通大学学报,2011,35(2):128-132. YANG Xiaofeng, SUN Hao, ZHI Gang, et al. Studies on control strategies of modular multilevel converters[J]. Journal of Beijing Jiaotong University, 2011, 35(2): 128-132. [7] 姚致清,刘涛,张爱玲,等. 直流融冰技术的研究及应用[J]. 电力系统保护与控制,2010,38(21):57-62. YAO Zhiqing, LIU Tao, ZHANG Ailing, et al. Research and application on DC de-icing technology[J]. Power System Protection and Control, 2010, 38(21): 57-62. [8] 常浩,石岩,殷威扬,等. 交直流线路融冰技术研究[J]. 电网技术,2008,32(5):1-6. CHANG Hao, SHI Yan, YIN Weiyang, et al. Ice-melting technologies for HVAC and HVDC transmission line[J]. Power System Technology, 2008, 32(5): 1-6. [9] 申屠刚,程极盛,江道灼,等. 500 kV 直流融冰兼动态无功补偿系统研发与工程试点[J]. 电力系统自动化,2009,33(23):75-80. SHEN Tugang, CHENG Jisheng, JIANG Daozhuo, et al. Research and pilot project of DC Deicer-SVC system for 500 kV transmission lines [J]. Automation of Electric Power System, 2009, 33(23): 75-80. [10] 梅红明,刘建政. 新型模块化多电平直流融冰装置[J]. 电力系统自动化,2013,37(16):96-102. MEI Hongming, LIU Jianzheng. A novel DC ice-melting equipment based on modular multilevel cascade converter[J]. Automation of Electric Power System, 2013, 37(16): 96-102. [11] 覃晖,邓帅,黄伟,等. 南方电网输电线路融冰措施综述[J]. 电力系统保护与控制,2010,38(24):231-235. QIN Hui, DENG Shuai, HUANG Wei, et al. Summary of power transmission line thawing measures[J]. Power System Protection and Control, 2010, 38(24): 231-235. [12] HUNEAUL T M, LANGHEIT C. Combined models for glaze ice accretion and de-icing of current-carrying electrical conductorsp[J]. IEEE Trans on Power Delivery, 2005, 20(2): 1611-1616. [13] GRANGER M, DU TIL A, NANTEL A. Performance aspects of Levis substation de-icing project using DC technology[C]//Mont real, Canada: Proceedings of the IEEE PES 11th International Workshop on Atmospheric Icing of Structures. June, 2005. [14] 中国南方电网公司.电网防冰融冰技术及应用[M]. 北京:中国电力出版社,2010. [15] 钟鈜州,刘明光,张雪亮. 高频交流与直流短路融冰比较研究[J]. 中国电力,2014,47(9):94-99. ZHONG Hongzhou, LIU Mingguang, ZHANG Xueliang. Comparative study on melting ice with high frequency AC and DC short circuit method [J]. Electric Power, 2014, 47(9): 94-99. [16] 吕锡锋,何青.高压输电线路电热融冰技术[J]. 中国电力,2014, 47(1):17-22. LV Xifeng, HE Qing. Electric ice-melting technology of high voltage transmission lines [J]. Electric Power, 2014, 47(1): 17-22. |