中国电力 ›› 2025, Vol. 58 ›› Issue (8): 139-146.DOI: 10.11930/j.issn.1004-9649.202501042

• 新型电网 • 上一篇    下一篇

考虑密集通道的多机电力系统暂态稳定性评估方法

王学军(), 方水平(), 池光湧()   

  1. 中国能源建设集团广东省电力设计研究院有限公司,广东 广州 510663
  • 收稿日期:2025-01-14 发布日期:2025-08-26 出版日期:2025-08-28
  • 作者简介:
    王学军(1980),男,通信作者,硕士,正高级工程师,从事电网工程设计及项目管理,E-mail:wangxuejun@gedi.com.cn
    方水平(1980),男,硕士,高级工程师,从事输电线路设计研究,E-mail:fangshuiping@gedi.com.cn
    池光湧(1981),男,高级工程师,从事电网工程项目管理,E-mail:chiguangyong@gedi.com.cn
  • 基金资助:
    国家科技重大专项课题资助项目(2024ZD0802604)

Transient Stability Assessment Method for Multi-machine Power Systems Considering Dense Channels

WANG Xuejun(), FANG Shuiping(), CHI Guangyong()   

  1. China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou 510663, China
  • Received:2025-01-14 Online:2025-08-26 Published:2025-08-28
  • Supported by:
    This work is supported by National Science and Technology Major Special Project (No.2024ZD0802604).

摘要:

为提高电力系统暂态稳定性评估的准确率和效率,提出了一种基于深度迁移学习的考虑密集通道的多机电力系统暂态稳定性评估方法。首先提出了一种新的暂态稳定性指标,建立了考虑密集通道的情况下电力系统的数据集及波动方程;然后提出了一种深度迁移学习方法,使用预训练的深度卷积神经网络进行暂态稳定性评估;最后通过仿真验证了所提方法具有较好的评估效率以及有效性。

关键词: 暂态稳定性评估, 深度迁移学习, 密集通道, 多机电力系统

Abstract:

To improve the accuracy and efficiency of power system transient stability assessment, a transient stability assessment method for multi-machine power system considering dense channel based on deep transfer is proposed. Firstly, a new transient stability index is proposed, and a data set and fluctuation equation of power system considering dense channel are established. Secondly, a deep transfer learning method for transient stability assessment using a pre-trained deep convolutional neural network is proposed. Finally, the effectiveness and efficiency of the proposed method are verified by simulation.

Key words: transient stability assessment, deep transfer learning, dense channels, multi-machine power systems


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?