中国电力 ›› 2025, Vol. 58 ›› Issue (8): 12-22, 30.DOI: 10.11930/j.issn.1004-9649.202408060
• 交直流配电系统灵活资源规划运行及动态控制 • 上一篇 下一篇
吉兴全1(), 毛会总1(
), 叶平峰2(
), 刘志强3, 张祥星1, 黄心月1, 倪亚超4
收稿日期:
2024-08-17
发布日期:
2025-08-26
出版日期:
2025-08-28
作者简介:
基金资助:
JI Xingquan1(), MAO Huizong1(
), YE Pingfeng2(
), LIU Zhiqiang3, ZHANG Xiangxing1, HUANG Xinyue1, NI Yachao4
Received:
2024-08-17
Online:
2025-08-26
Published:
2025-08-28
Supported by:
摘要:
直流配电系统发生经高阻单极接地时,系统暂态电流幅值较小,故障信息微弱,现有保护方法难以对直流系统进行有效的保护,对此,提出了一种基于电流积分量相关性的直流配电线路单极接地保护方法。针对高阻接地故障暂态电流特性,得到区内外故障电流极性差异特征;计算电流积分量序列,以突出电流整体变化态势;采用Pearson相关性分析获取首尾电流关联程度,并以关联程度为依据构造故障判据,实现对直流配电线路单极接地故障的保护。基于PSCAD/EMTDC仿真平台进行仿真验证,结果表明,所提方法能够在较微弱的故障特征下进行准确的故障保护,具有较高的保护灵敏性和可靠性。
吉兴全, 毛会总, 叶平峰, 刘志强, 张祥星, 黄心月, 倪亚超. 基于电流积分量相关性的直流配电线路单极高阻接地保护[J]. 中国电力, 2025, 58(8): 12-22, 30.
JI Xingquan, MAO Huizong, YE Pingfeng, LIU Zhiqiang, ZHANG Xiangxing, HUANG Xinyue, NI Yachao. Single-Pole High-Resistance Grounding Protection for DC Distribution Lines Based on Current Integral Quantity Correlation[J]. Electric Power, 2025, 58(8): 12-22, 30.
设备 | 参数 | 数值 | ||
MMC换流器 | 电压变比 | AC 10 kV/DC±10 kV | ||
容量/(MV·A) | 10 | |||
子模块数量 | 50 | |||
子模块电容/mF | 10 | |||
桥臂电感/mH | 5 | |||
直流电缆 | L1长度/km | 2 | ||
电阻/(Ω·km–1) | ||||
电感/(H·km–1) | ||||
电容(μF·km–1) | 1.372 | |||
光伏 | 工作模式 | 最大功率点跟踪 | ||
光照强度/(W·m–2) | ||||
功率/MW | 0.5 | |||
储能 | 功率/MW | 1 | ||
风电 | 功率/MW | 0.5 | ||
直流负荷 | 功率/MW | 1 |
表 1 直流配电系统参数
Table 1 DC distribution system parameters
设备 | 参数 | 数值 | ||
MMC换流器 | 电压变比 | AC 10 kV/DC±10 kV | ||
容量/(MV·A) | 10 | |||
子模块数量 | 50 | |||
子模块电容/mF | 10 | |||
桥臂电感/mH | 5 | |||
直流电缆 | L1长度/km | 2 | ||
电阻/(Ω·km–1) | ||||
电感/(H·km–1) | ||||
电容(μF·km–1) | 1.372 | |||
光伏 | 工作模式 | 最大功率点跟踪 | ||
光照强度/(W·m–2) | ||||
功率/MW | 0.5 | |||
储能 | 功率/MW | 1 | ||
风电 | 功率/MW | 0.5 | ||
直流负荷 | 功率/MW | 1 |
故障位置 | 过渡电阻/Ω | 正极相关性系数 | 负极相关性系数 | 保护情况 | ||||
区内 | 20 | – | 动作 | |||||
70 | – | 动作 | ||||||
200 | – | 动作 | ||||||
500 | – | 动作 | ||||||
750 | – | 动作 | ||||||
区外 | 30 | 不动作 | ||||||
70 | 不动作 | |||||||
200 | 不动作 | |||||||
500 | 不动作 | |||||||
750 | 不动作 |
表 2 电流积分量方法故障保护情况
Table 2 Fault protection in current integral quantity method
故障位置 | 过渡电阻/Ω | 正极相关性系数 | 负极相关性系数 | 保护情况 | ||||
区内 | 20 | – | 动作 | |||||
70 | – | 动作 | ||||||
200 | – | 动作 | ||||||
500 | – | 动作 | ||||||
750 | – | 动作 | ||||||
区外 | 30 | 不动作 | ||||||
70 | 不动作 | |||||||
200 | 不动作 | |||||||
500 | 不动作 | |||||||
750 | 不动作 |
故障位置 | 过渡电阻/Ω | 正极相关性系数 | 负极相关性系数 | 保护情况 | ||||
区内 | 20 | – | 动作 | |||||
70 | – | 动作 | ||||||
200 | – | 不动作 | ||||||
500 | 不动作 | |||||||
750 | 不动作 | |||||||
区外 | 30 | 不动作 | ||||||
70 | 不动作 | |||||||
200 | 不动作 | |||||||
500 | 不动作 | |||||||
750 | 不动作 |
表 3 电流突变量方法故障保护情况
Table 3 Fault protection in current sudden change method
故障位置 | 过渡电阻/Ω | 正极相关性系数 | 负极相关性系数 | 保护情况 | ||||
区内 | 20 | – | 动作 | |||||
70 | – | 动作 | ||||||
200 | – | 不动作 | ||||||
500 | 不动作 | |||||||
750 | 不动作 | |||||||
区外 | 30 | 不动作 | ||||||
70 | 不动作 | |||||||
200 | 不动作 | |||||||
500 | 不动作 | |||||||
750 | 不动作 |
故障位置 | 过渡电阻/Ω | 正极相关性系数 | 负极相关性系数 | 动作情况 | ||||
区内 | 30 | – | 动作 | |||||
70 | – | 动作 | ||||||
200 | – | 动作 | ||||||
450 | – | 动作 | ||||||
500 | – | 动作 | ||||||
区外 | 30 | 不动作 | ||||||
70 | 不动作 | |||||||
200 | 不动作 | |||||||
450 | 不动作 | |||||||
500 | 不动作 |
表 4 含10 dB噪声故障保护情况
Table 4 Fault protection with 10 dB noise
故障位置 | 过渡电阻/Ω | 正极相关性系数 | 负极相关性系数 | 动作情况 | ||||
区内 | 30 | – | 动作 | |||||
70 | – | 动作 | ||||||
200 | – | 动作 | ||||||
450 | – | 动作 | ||||||
500 | – | 动作 | ||||||
区外 | 30 | 不动作 | ||||||
70 | 不动作 | |||||||
200 | 不动作 | |||||||
450 | 不动作 | |||||||
500 | 不动作 |
1 |
张勇军, 刘子文, 宋伟伟, 等. 直流配电系统的组网技术及其应用[J]. 电力系统自动化, 2019, 43 (23): 39- 49.
DOI |
ZHANG Yongjun, LIU Ziwen, SONG Weiwei, et al. Networking technology and its application of DC distribution system[J]. Automation of Electric Power Systems, 2019, 43 (23): 39- 49.
DOI |
|
2 |
曹赋禄, 赵晋斌, 潘超, 等. 基于DFFT的低压直流线路主动式接地故障定位方法[J]. 中国电力, 2023, 56 (4): 184- 191.
DOI |
CAO Fulu, ZHAO Jinbin, PAN Chao, et al. An active ground fault location method for low-voltage DC lines based on DFFT[J]. Electric Power, 2023, 56 (4): 184- 191.
DOI |
|
3 |
彭茂兰, 冯雷, 王宇, 等. 基于桥臂调制波调整的多端柔直系统直流过电压抑制策略[J]. 中国电力, 2024, 57 (4): 171- 181.
DOI |
PENG Maolan, FENG Lei, WANG Yu, et al. DC overvoltage suppression strategy for MMC-MTDC based on bridge arm modulated wave adjustment[J]. Electric Power, 2024, 57 (4): 171- 181.
DOI |
|
4 | 薛士敏, 陈超超, 金毅, 等. 直流配电系统保护技术研究综述[J]. 中国电机工程学报, 2014, 34 (19): 3114- 3122. |
XUE Shimin, CHEN Chaochao, JIN Yi, et al. A research review of protection technology for DC distribution system[J]. Proceedings of the CSEE, 2014, 34 (19): 3114- 3122. | |
5 |
刘国强, 李国春, 郝亚楠, 等. 低压直流配电网强弱电弧特征及检测算法[J]. 中国电力, 2024, 57 (2): 94- 102.
DOI |
LIU Guoqiang, LI Guochun, HAO Yanan, et al. Characteristics and detection algorithm of strong and weak arc in low voltage DC distribution network[J]. Electric Power, 2024, 57 (2): 94- 102.
DOI |
|
6 |
王守相, 刘琪, 薛士敏, 等. 直流配电系统控制与保护协同关键技术及展望[J]. 电力系统自动化, 2019, 43 (23): 23- 30.
DOI |
WANG Shouxiang, LIU Qi, XUE Shimin, et al. Key technologies and prospect for coordinated control and protection in DC distribution system[J]. Automation of Electric Power Systems, 2019, 43 (23): 23- 30.
DOI |
|
7 | AHMED H M A, ELTANTAWY A B, SALAMA M M A. A planning approach for the network configuration of AC-DC hybrid distribution systems[J]. IEEE Transactions on Smart Grid, 2016, 9 (3): 2203- 2213. |
8 |
QIAO L, LI X L, HUANG D, et al. Coordinated control for medium voltage DC distribution centers with flexibly interlinked multiple microgrids[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7 (3): 599- 611.
DOI |
9 |
韩杰祥, 张哲, 冉启胜, 等. 低压直流配电网主动限流控制及保护方案[J]. 电力系统自动化, 2022, 46 (9): 182- 190.
DOI |
HAN Jiexiang, ZHANG Zhe, RAN Qisheng, et al. Active current-limiting control and protection scheme for low-voltage DC distribution network[J]. Automation of Electric Power Systems, 2022, 46 (9): 182- 190.
DOI |
|
10 | 蔡田田, 姚浩, 杨英杰, 等. 基于云-边协同的配电网快速供电恢复智能决策方法[J]. 电力系统保护与控制, 2023, 51 (19): 94- 103. |
CAI Tiantian, YAO Hao, YANG Yingjie, et al. Cloud-edge collaboration-based supply restoration intelligent decision-making method[J]. Power System Protection and Control, 2023, 51 (19): 94- 103. | |
11 | 曾嵘, 李勇, 谢李为, 等. 一种城市配电网自适应全线电流保护方法[J]. 电力系统保护与控制, 2023, 51 (5): 154- 163. |
ZENG Rong, LI Yong, XIE Liwei, et al. An adaptive full-line current protection method for an urban distribution network[J]. Power System Protection and Control, 2023, 51 (5): 154- 163. | |
12 | 王业, 任旭超, 杜云龙, 等. 基于改进CUSUM算法的混合级联直流输电系统低电压保护优化策略[J]. 电力科学与技术学报, 2024, 39 (03): 58- 66. |
WANG Ye, REN Xuchao, DU Yunlong, et al. Improved CUSUM algorithm for low voltage protection strategy of hybrid cascade HVDC transmission system[J]. Journal of Electric Power Science and Technology, 2024, 39 (03): 58- 66. | |
13 | JIA K, FENG T, ZHAO Q J, et al. High frequency transient sparse measurement-based fault location for complex DC distribution networks[J]. IEEE Transactions on Smart Grid, 2019, 11 (1): 312- 322. |
14 |
DAI Z H, LIU X Y, HE Y X, et al. Single-terminal quantity based line protection for ring flexible DC distribution grids[J]. IEEE Transactions on Power Delivery, 2020, 35 (1): 310- 323.
DOI |
15 |
李斌, 何佳伟, 冯亚东, 等. 多端柔性直流电网保护关键技术[J]. 电力系统自动化, 2016, 40 (21): 2- 12.
DOI |
LI Bin, HE Jiawei, FENG Yadong, et al. Key techniques for protection of multi-terminal flexible DC grid[J]. Automation of Electric Power Systems, 2016, 40 (21): 2- 12.
DOI |
|
16 | 夏福良, 秦文萍, 陈武晖, 等. 基于正负极电流小波降噪残差和之比的多端柔性直流系统单极接地选线方案[J]. 高电压技术, 2022, 48 (3): 1032- 1041. |
XIA Fuliang, QIN Wenping, CHEN Wuhui, et al. Single-pole grounding line selection scheme for multi-terminal flexible DC system based on the ratio of positive and negative current wavelet noise reduction residual sum[J]. High Voltage Engineering, 2022, 48 (3): 1032- 1041. | |
17 |
吕家乐, 杨景刚, 陈庆, 等. 基于电流微分状态量的直流配电网分布式区域保护[J]. 电力系统自动化, 2020, 44 (18): 139- 146.
DOI |
LV Jiale, YANG Jinggang, CHEN Qing, et al. Distributed area protection for DC distribution network based on current differential state variable[J]. Automation of Electric Power Systems, 2020, 44 (18): 139- 146.
DOI |
|
18 | 杨冬锋, 李绍伟, 刘晓军, 等. 柔性直流配网中基于限流电抗电压的高灵敏纵联保护方案[J]. 高电压技术, 2023, 49 (4): 1545- 1555. |
YANG Dongfeng, LI Shaowei, LIU Xiaojun, et al. A high-sensitivity pilot protection scheme based on current-limiting reactance voltage for flexible DC distribution grid[J]. High Voltage Engineering, 2023, 49 (4): 1545- 1555. | |
19 |
贾科, 陈聪, 刘子奕, 等. 基于单端电流暂态量的柔性直流配电网保护及其整定[J]. 电力系统自动化, 2022, 46 (6): 144- 152.
DOI |
JIA Ke, CHEN Cong, LIU Ziyi, et al. Protection of flexible DC distribution network based on single-end current transient and its setting[J]. Automation of Electric Power Systems, 2022, 46 (6): 144- 152.
DOI |
|
20 |
孙刚, 时伯年, 赵宇明, 等. 基于MMC的柔性直流配电网故障定位及保护配置研究[J]. 电力系统保护与控制, 2015, 43 (22): 127- 133.
DOI |
SUN Gang, SHI Bonian, ZHAO Yuming, et al. Research on the fault location method and protection configuration strategy of MMC based DC distribution grid[J]. Power System Protection and Control, 2015, 43 (22): 127- 133.
DOI |
|
21 |
王守相, 王振宇, 刘琪, 等. 基于控制与保护协同的直流配电系统单极接地故障保护策略[J]. 电力系统自动化, 2020, 44 (17): 120- 126.
DOI |
WANG Shouxiang, WANG Zhenyu, LIU Qi, et al. Protection strategy of single-pole grounding fault in DC distribution system based on coordination of control and protection[J]. Automation of Electric Power Systems, 2020, 44 (17): 120- 126.
DOI |
|
22 |
汪光远, 杨德先, 林湘宁, 等. 基于深度置信网络的柔性直流配电网高灵敏故障辨识策略[J]. 电力系统自动化, 2021, 45 (17): 180- 188.
DOI |
WANG Guangyuan, YANG Dexian, LIN Xiangning, et al. High-sensitivity fault identification strategy for flexible DC distribution network based on deep belief networks[J]. Automation of Electric Power Systems, 2021, 45 (17): 180- 188.
DOI |
|
23 | 王渝红, 傅云涛, 曾琦, 等. 柔性直流电网故障保护关键技术研究综述[J]. 高电压技术, 2019, 45 (8): 2362- 2374. |
WANG Yuhong, FU Yuntao, ZENG Qi, et al. Review on key techniques for fault protection of flexible DC grids[J]. High Voltage Engineering, 2019, 45 (8): 2362- 2374. | |
24 | 李卫丰, 王超, 薛永端, 等. 基于暂态功率方向的柔性直流配电网线路单极接地保护方法[J]. 电力系统保护与控制, 2021, 49 (23): 1- 10. |
LI Weifeng, WANG Chao, XUE Yongduan, et al. A flexible DC distribution network line unipolar grounding protection method based on transient power direction[J]. Power System Protection and Control, 2021, 49 (23): 1- 10. | |
25 | HE J H, CHEN K A, LI M, et al. Review of protection and fault handling for a flexible DC grid[J]. Protection and Control of Modern Power Systems, 2020, 5 (2): 1- 15. |
26 | 戴志辉, 葛红波, 严思齐, 等. 柔性直流配电网接地方式对故障特性的影响分析[J]. 电网技术, 2017, 41 (7): 2353- 2364. |
DAI Zhihui, GE Hongbo, YAN Siqi, et al. Effects of grounding mode on fault characteristics in flexible DC distribution system[J]. Power System Technology, 2017, 41 (7): 2353- 2364. | |
27 | 王晓卫, 高杰, 吴磊, 等. 柔性直流配电网高阻接地故障检测方法[J]. 电工技术学报, 2019, 34 (13): 2806- 2819. |
WANG Xiaowei, GAO Jie, WU Lei, et al. A high impedance fault detection method for flexible DC distribution network[J]. Transactions of China Electrotechnical Society, 2019, 34 (13): 2806- 2819. | |
28 | 左鹏飞, 秦文萍, 夏福良, 等. 基于零模电流相关性的直流配电网单极接地选线方法[J]. 电力系统保护与控制, 2022, 50 (13): 86- 96. |
ZUO Pengfei, QIN Wenping, XIA Fuliang, et al. Single-pole ground selection method for DC distribution networks based on zero-mode current correlation[J]. Power System Protection and Control, 2022, 50 (13): 86- 96. |
[1] | 袁宇波, 易文飞, 赵学深, 朱琳, 王一振, 刘海涛. 一种基于泰勒展开的临界降阶直流配电系统稳定控制算法[J]. 中国电力, 2021, 54(10): 73-80. |
[2] | 贾静然, 段晓波, 卢锦玲, 周文, 任睿. 变压器的谐波传递特性研究[J]. 中国电力, 2017, 50(1): 92-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||