中国电力 ›› 2024, Vol. 57 ›› Issue (9): 124-135.DOI: 10.11930/j.issn.1004-9649.202311031
倪筹帷1(), 陈杨2, 张雪松1, 林达1, 杜凯健1, 陈健2(
)
收稿日期:
2023-11-07
出版日期:
2024-09-28
发布日期:
2024-09-23
作者简介:
倪筹帷(1991—),男,博士,高级工程师,从事综合能源优化技术研究,E-mail:12345 ncw@163.com基金资助:
Chouwei NI1(), Yang CHEN2, Xuesong ZHANG1, Da LIN1, Kaijian DU1, Jian CHEN2(
)
Received:
2023-11-07
Online:
2024-09-28
Published:
2024-09-23
Supported by:
摘要:
电热氢系统作为一种高效的综合能源供用系统受到广泛关注。然而,氢气的燃爆特性导致了其面临着安全性挑战。为此,提出了考虑安全性风险的电热氢系统优化配置方法。首先,分析电热氢系统的安全性,对电解槽和燃料电池的工作范围和工作温度进行约束;然后,基于氢气的非理想气体压强公式对储氢罐压强进行更为准确地约束,并基于TNT当量法量化了储氢罐的安全性风险;最后,通过安全风险系数,将储氢罐的安全风险折算进目标函数中,建立了以系统投资成本、运行成本和安全性风险为优化目标的电热氢系统优化配置模型,并利用禁忌混沌量子粒子群算法进行求解。算例结果表明,在考虑安全性风险的情况下,通过合理的容量设计,可以在提高系统经济性的同时有效降低系统安全风险,进而验证了该优化设计方法的有效性。
倪筹帷, 陈杨, 张雪松, 林达, 杜凯健, 陈健. 考虑安全性风险的电热氢系统优化配置方法[J]. 中国电力, 2024, 57(9): 124-135.
Chouwei NI, Yang CHEN, Xuesong ZHANG, Da LIN, Kaijian DU, Jian CHEN. Optimal Configuration Method for Electric-thermo-hydrogen System Considering Safety Risks[J]. Electric Power, 2024, 57(9): 124-135.
时段 | 价格/(元·(kW·h)–1) | |
00:00—06:00、23:00—24:00 | 0.45 | |
07:00—11:00、18:00—22:00 | 1.21 | |
12:00—17:00 | 0.73 |
表 1 分时电价
Table 1 Time-of-use price
时段 | 价格/(元·(kW·h)–1) | |
00:00—06:00、23:00—24:00 | 0.45 | |
07:00—11:00、18:00—22:00 | 1.21 | |
12:00—17:00 | 0.73 |
设备参数 | AEC | PEMEC | ||
制氢效率 | 0.65 | 0.70 | ||
温度下限/℃ | 60 | 50 | ||
温度上限/℃ | 95 | 80 | ||
启停成本/元 | 10/1 | 8/1 | ||
出力下限/% | 25 | 5 | ||
出力上限/% | 100 | 100 | ||
爬坡上限/(%·h–1) | 50 | 95 | ||
开机次数上限 | 1 | 2 | ||
关机次数上限 | 1 | 2 | ||
启动延时/h | 1 | 0 |
表 2 多类型电解槽参数
Table 2 Multi-type electrolytic cell parameters
设备参数 | AEC | PEMEC | ||
制氢效率 | 0.65 | 0.70 | ||
温度下限/℃ | 60 | 50 | ||
温度上限/℃ | 95 | 80 | ||
启停成本/元 | 10/1 | 8/1 | ||
出力下限/% | 25 | 5 | ||
出力上限/% | 100 | 100 | ||
爬坡上限/(%·h–1) | 50 | 95 | ||
开机次数上限 | 1 | 2 | ||
关机次数上限 | 1 | 2 | ||
启动延时/h | 1 | 0 |
设备 | 投资成本 | 容量上限 | 容量下限 | 年限/年 | ||||
AEC | 3 MW | 1 MW | 10 | |||||
PEMEC | 3 MW | 1 MW | 8 | |||||
氢燃料电池 | 3 MW | 1 MW | 5 | |||||
电锅炉 | 3 MW | 0 MW | 15 | |||||
蓄电池 | 3 MW | 0 MW | 10 | |||||
储热罐 | 56元/kW | 10 MW | 1 MW | 25 | ||||
储氢罐 | 100 kg | 35 |
表 3 设备容量配置参数
Table 3 Equipment capacity configuration parameters
设备 | 投资成本 | 容量上限 | 容量下限 | 年限/年 | ||||
AEC | 3 MW | 1 MW | 10 | |||||
PEMEC | 3 MW | 1 MW | 8 | |||||
氢燃料电池 | 3 MW | 1 MW | 5 | |||||
电锅炉 | 3 MW | 0 MW | 15 | |||||
蓄电池 | 3 MW | 0 MW | 10 | |||||
储热罐 | 56元/kW | 10 MW | 1 MW | 25 | ||||
储氢罐 | 100 kg | 35 |
设备 | 经济性最优方案 | 安全性最优方案 | 综合最优方案 | |||
AEC/MW | 3 | 3 | 3 | |||
PEMEC/MW | 1 | 1 | 1 | |||
氢燃料电池/MW | 0.5 | 1.5 | 0.5 | |||
储热罐/MW | 10 | 10 | 10 | |||
蓄电池/MW | 0.5 | 1 | 1.5 | |||
储氢罐/kg | 500 | 700 | 700 | |||
电锅炉/MW | 1.5 | 1.5 | 1.5 |
表 4 不同案例设备容量配置结果对比
Table 4 Comparison of equipment capacity configuration results in different cases
设备 | 经济性最优方案 | 安全性最优方案 | 综合最优方案 | |||
AEC/MW | 3 | 3 | 3 | |||
PEMEC/MW | 1 | 1 | 1 | |||
氢燃料电池/MW | 0.5 | 1.5 | 0.5 | |||
储热罐/MW | 10 | 10 | 10 | |||
蓄电池/MW | 0.5 | 1 | 1.5 | |||
储氢罐/kg | 500 | 700 | 700 | |||
电锅炉/MW | 1.5 | 1.5 | 1.5 |
评价指标 | 经济性最优 方案 | 安全性最优 方案 | 综合最优 方案 | |||
平均最大危险距离/m | 17.2 | 19.5 | 19.5 | |||
平均危险距离/m | 16.9 | 18.9 | 19.0 | |||
平均压强/MPa | 37.9 | 35.8 | 36.2 | |||
压强平均越限时段数 | 36.5 | 11.0 | 12.0 | |||
距离平均越限时段数 | 0.0 | 0.5 | 0.5 | |||
两者平均越限时段数 | 0.0 | 0.5 | 0.5 |
表 5 不同配置方案安全性指标对比
Table 5 Comparison of safety indexes with different configuration schemes
评价指标 | 经济性最优 方案 | 安全性最优 方案 | 综合最优 方案 | |||
平均最大危险距离/m | 17.2 | 19.5 | 19.5 | |||
平均危险距离/m | 16.9 | 18.9 | 19.0 | |||
平均压强/MPa | 37.9 | 35.8 | 36.2 | |||
压强平均越限时段数 | 36.5 | 11.0 | 12.0 | |||
距离平均越限时段数 | 0.0 | 0.5 | 0.5 | |||
两者平均越限时段数 | 0.0 | 0.5 | 0.5 |
安全风 险系数 | 运行成 本/元 | 平均危险 距离/m | 最大压 强/MPa | 平均压 强/MPa | 压强超标 时段数 | 距离超标 时段数 | ||||||
0 | – | 19.0 | 39.6 | 36.2 | 12.0 | 0.5 | ||||||
5 | – | 18.8 | 37.2 | 35.3 | 2.5 | 0 | ||||||
10 | – | 18.8 | 36.8 | 35.2 | 1.5 | 0 | ||||||
15 | – | 18.8 | 37.1 | 35.2 | 1.5 | 0 | ||||||
20 | – | 18.8 | 36.9 | 35.2 | 1.5 | 0 | ||||||
25 | – | 18.8 | 36.9 | 35.2 | 1.5 | 0 |
表 6 不同安全风险系数下各项指标对比
Table 6 Comparison of various indicators with different safety risk coefficients
安全风 险系数 | 运行成 本/元 | 平均危险 距离/m | 最大压 强/MPa | 平均压 强/MPa | 压强超标 时段数 | 距离超标 时段数 | ||||||
0 | – | 19.0 | 39.6 | 36.2 | 12.0 | 0.5 | ||||||
5 | – | 18.8 | 37.2 | 35.3 | 2.5 | 0 | ||||||
10 | – | 18.8 | 36.8 | 35.2 | 1.5 | 0 | ||||||
15 | – | 18.8 | 37.1 | 35.2 | 1.5 | 0 | ||||||
20 | – | 18.8 | 36.9 | 35.2 | 1.5 | 0 | ||||||
25 | – | 18.8 | 36.9 | 35.2 | 1.5 | 0 |
1 |
WANG X J, ZHAO H R, LU H, et al. Decentralized coordinated operation model of VPP and P2H systems based on stochastic-bargaining game considering multiple uncertainties and carbon cost[J]. Applied Energy, 2022, 312, 118750.
DOI |
2 |
ZARE OSKOUEI M, MEHRJERDI H. Optimal allocation of power-to-hydrogen units in regional power grids for green hydrogen trading: opportunities and barriers[J]. Journal of Cleaner Production, 2022, 358, 131937.
DOI |
3 |
XIANG Y, CAI H H, LIU J Y, et al. Techno-economic design of energy systems for airport electrification: a hydrogen-solar-storage integrated microgrid solution[J]. Applied Energy, 2021, 283, 116374.
DOI |
4 | 周建力, 乌云娜, 董昊鑫, 等. 计及电动汽车随机充电的风-光-氢综合能源系统优化规划[J]. 电力系统自动化, 2021, 45 (24): 30- 40. |
ZHOU Jianli, WU Yunna, DONG Haoxin, et al. Optimal planning of wind-photovoltaic-hydrogen integrated energy system considering random charging of electric vehicles[J]. Automation of Electric Power Systems, 2021, 45 (24): 30- 40. | |
5 | 韩子娇, 李正文, 张文达, 等. 计及光伏出力不确定性的氢能综合能源系统经济运行策略[J]. 电力自动化设备, 2021, 41 (10): 99- 106. |
HAN Zijiao, LI Zhengwen, ZHANG Wenda, et al. Economic operation strategy of hydrogen integrated energy system considering uncertainty of photovoltaic output power[J]. Electric Power Automation Equipment, 2021, 41 (10): 99- 106. | |
6 | 张昊天, 韦钢, 袁洪涛, 等. 考虑氢-电混合储能的直流配电网优化调度[J]. 电力系统自动化, 2021, 45 (14): 72- 81. |
ZHANG Haotian, WEI Gang, YUAN Hongtao, et al. Optimal scheduling of DC distribution network considering hydrogen-power hybrid energy storage[J]. Automation of Electric Power Systems, 2021, 45 (14): 72- 81. | |
7 | 刘敏, 张雪松, 赵红霞, 等. 氢电耦合系统安全风险研究[J]. 浙江电力, 2023, 42 (5): 34- 41. |
LIU Min, ZHANG Xuesong, ZHAO Hongxia, et al. Study on the safety risk of a hydrogen-electric coupling system[J]. Zhejiang Electric Power, 2023, 42 (5): 34- 41. | |
8 |
NAJJAR Y S H. Hydrogen safety: the road toward green technology[J]. International Journal of Hydrogen Energy, 2013, 38 (25): 10716- 10728.
DOI |
9 | 郑津洋, 刘自亮, 花争立, 等. 氢安全研究现状及面临的挑战[J]. 安全与环境学报, 2020, 20 (1): 106- 115. |
ZHENG Jinyang, LIU Ziliang, HUA Zhengli, et al. Research status-in-situ and key challenges in hydrogen safety[J]. Journal of Safety and Environment, 2020, 20 (1): 106- 115. | |
10 |
ABOHAMZEH E, SALEHI F, SHEIKHOLESLAMI M, et al. Review of hydrogen safety during storage, transmission, and applications processes[J]. Journal of Loss Prevention in the Process Industries, 2021, 72, 104569.
DOI |
11 |
PAN G S, GU W, QIU H F, et al. Bi-level mixed-integer planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen[J]. Applied Energy, 2020, 270, 115176.
DOI |
12 |
QI Y C, HU W, DONG Y, et al. Optimal configuration of concentrating solar power in multienergy power systems with an improved variational autoencoder[J]. Applied Energy, 2020, 274, 115124.
DOI |
13 | 卢子敬, 李子寿, 郭相国, 等. 基于多目标人工蜂鸟算法的电-氢混合储能系统最优配置[J]. 中国电力, 2023, 56 (7): 33- 42. |
LU Zijing, LI Zishou, GUO Xiangguo, et al. Optimal configuration of electricity-hydrogen hybrid energy storage system based on multi-objective artificial hummingbird algorithm[J]. Electric Power, 2023, 56 (7): 33- 42. | |
14 | 袁铁江, 杨洋, 李瑞, 等. 考虑源荷不确定性的氢能微网容量优化配置[J]. 中国电力, 2023, 56 (7): 21- 32. |
YUAN Tiejiang, YANG Yang, LI Rui, et al. Optimized configuration of hydrogen-energy microgrid capacity considering source charge uncertainties[J]. Electric Power, 2023, 56 (7): 21- 32. | |
15 | 窦真兰, 张春雁, 赵慧荣, 等. 含氢能汽车负荷的住宅光-氢耦合能源系统容量优化配置[J]. 中国电力, 2023, 56 (7): 54- 65. |
DOU Zhenlan, ZHANG Chunyan, ZHAO Huirong, et al. Optimal capacity configuration of residential solar-hydrogen coupling energy system with hydrogen vehicle load[J]. Electric Power, 2023, 56 (7): 54- 65. | |
16 |
CHEN Z D, WANG Z H, FAN Z X, et al. Safe-efficient operation strategies for integrated system of photovoltaic and proton exchange membrane electrolysis cells[J]. International Journal of Hydrogen Energy, 2024, 49, 184- 206.
DOI |
17 | 杨紫娟, 田雪沁, 吴伟丽, 等. 考虑电解槽组合运行的风电-氢能-HCNG耦合网络容量优化配置[J]. 电力系统自动化, 2023, 47 (12): 76- 85. |
YANG Zijuan, TIAN Xueqin, WU Weili, et al. Optimal capacity configuration of wind-hydrogen-HCNG coupled network considering combined electrolyzer operation[J]. Automation of Electric Power Systems, 2023, 47 (12): 76- 85. | |
18 | 廖文俊, 倪蕾蕾, 季文姣, 等. 分布式能源用燃料电池的应用及发展前景[J]. 装备机械, 2017, (3): 58- 64. |
19 | 郑文迪, 雷克波, 王向杰, 等. 考虑气–固两相储氢特性的电–氢充能站安全运行策略[J]. 中国电机工程学报, 2023, 43 (18): 6965- 6977. |
ZHENG Wendi, LEI Kebo, WANG Xiangjie, et al. Safe operation strategy of electric-hydrogen charging station with gas-solid hydrogen storage characteristics[J]. Proceedings of the CSEE, 2023, 43 (18): 6965- 6977. | |
20 | 李佳蓉, 林今, 邢学韬, 等. 主动配电网中基于统一运行模型的电制氢(P2H)模块组合选型与优化规划[J]. 中国电机工程学报, 2021, 41 (12): 4021- 4032, S3. |
LI Jiarong, LIN Jin, XING Xuetao, et al. Technology portfolio selection and optimal planning of power-to-hydrogen (P2H) modules in active distribution network[J]. Proceedings of the CSEE, 2021, 41 (12): 4021- 4032, S3. | |
21 | 刘承锡, 曾冠维, 廖敏芳, 等. 大容量电解槽动态仿真建模及其快速频率响应分析[J]. 电网技术, 2023, 47 (11): 4638- 4648. |
LIU Chengxi, ZENG Guanwei, LIAO Minfang, et al. Modeling of large-scale electrolyzers for real-time simulation and analysis of its fast frequency response[J]. Power System Technology, 2023, 47 (11): 4638- 4648. | |
22 | 王士博, 孔令国, 蔡国伟, 等. 电力系统氢储能关键应用技术现状、挑战及展望[J]. 中国电机工程学报, 2023, 43 (17): 6660- 6680. |
WANG Shibo, KONG Lingguo, CAI Guowei, et al. Current status, challenges and prospects of key application technologies for hydrogen storage in power system[J]. Proceedings of the CSEE, 2023, 43 (17): 6660- 6680. | |
23 | WANG Z X, HU J J, LIU B Z. Stochastic optimal dispatching strategy of electricity-hydrogen-gas-heat integrated energy system based on improved spectral clustering method[J]. International Journal of Electrical Power & Energy Systems, 2021, 126, 106495. |
24 | 陈瑞. 高压储氢风险控制技术研究[D]. 杭州: 浙江大学, 2008. |
CHEN Rui. Research on risk control technique of high-pressure hydrogen storage[D]. Hangzhou: Zhejiang University, 2008. | |
25 |
ZHANG L Q, DAI W Z, ZHAO B, et al. Multi-time-scale economic scheduling method for electro-hydrogen integrated energy system based on day-ahead long-time-scale and intra-day MPC hierarchical rolling optimization[J]. Frontiers in Energy Research, 2023, 11, 1132005.
DOI |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||