[1] 徐钢, 薛小军, 张钟, 等. 一种基于电解水制氢及甲醇合成的碳中和能源技术路线[J]. 中国电机工程学报, 2023, 43(1): 191–201 XU Gang, XUE Xiaojun, ZHANG Zhong, et al. A new carbon neutral energy technology route based on electrolytic water to hydrogen and methanol synthesis[J]. Proceedings of the CSEE, 2023, 43(1): 191–201 [2] 全国煤化工信息总站. 首套千吨级太阳能发电、电解水制氢、二氧化碳与氢气合成甲醇示范项目试车成功[J]. 煤化工, 2020, 48(1): 60 [3] 达茂旗风光制氢与绿色灵活化工一体化项目开工. [EB/OL]. [2022-3-25](2023-01-10). https://www.cpnn.com.cn/news/kj/202207/t20220706_1530664_wap.html. [4] 中国氢能联盟. 中国氢能源及燃料电池产业白皮书(2020)[R]. 2020.4. 21. [5] KLYAPOVSKIY S, ZHENG Y, YOU S, et al. Optimal operation of the hydrogen-based energy management system with P2X demand response and ammonia plant[J]. Applied Energy, 2021, 304: 117559. [6] 朱伟业, 罗毅, 胡博, 等. 热负荷弹性与分时电价需求侧响应协同促进碳减排的电热优化调度[J]. 电网技术, 2021, 45(10): 3803–3813 ZHU Weiye, LUO Yi, HU Bo, et al. Optimized combined heat and power dispatch considering decreasing carbon emission by coordination of heat load elasticity and time-of-use demand response[J]. Power System Technology, 2021, 45(10): 3803–3813 [7] 郭梦婕, 严正, 周云, 等. 含风电制氢装置的综合能源系统优化运行[J]. 中国电力, 2020, 53(1): 115–123,161 GUO Mengjie, YAN Zheng, ZHOU Yun, et al. Optimized operation design of integrated energy system with wind power hydrogen production[J]. Electric Power, 2020, 53(1): 115–123,161 [8] 杨辰星. 公共楼宇空调负荷参与电网调峰关键技术研究[D]. 南京: 东南大学, 2017. YANG Chenxing. Research on key technologies for peak load shaving by public buildings’air conditioning loads[D]. Nanjing: Southeast University, 2017. [9] 曹昉, 郭培林, 王科, 等. 等室内舒适指数比调整的空调群负荷响应方法[J]. 中国电力, 2017, 50(11): 152–157 CAO Fang, GUO Peilin, WANG Ke, et al. Load response method of air conditioning groups based on equalize proportion adjustment of indoor comfort index[J]. Electric Power, 2017, 50(11): 152–157 [10] BAO Y, XU J, FENG W, et al. Provision of secondary frequency regulation by coordinated dispatch of industrial loads and thermal power plants[J]. Applied Energy, 2019, 241: 302–312. [11] LIAO S Y, XU J, SUN Y Z, et al. Control of energy-intensive load for power smoothing in wind power plants[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6142–6154. [12] 彭生江, 孙传帅, 妥建军, 等. 面向统一能源系统的中长期氢负荷预测[J]. 中国电力, 2022, 55(1): 84–90 PENG Shengjiang, SUN Chuanshuai, TUO Jianjun, et al. Medium and long-term hydrogen load forecast for unified energy system[J]. Electric Power, 2022, 55(1): 84–90 [13] 袁铁江, 孙传帅, 谭捷, 等. 考虑氢负荷的新型电力系统电源规划[J]. 中国电机工程学报, 2022, 42(17): 6316–6326 YUAN Tiejiang, SUN Chuanshuai, TAN Jie, et al. Generation planning of new power system considering hydrogen load[J]. Proceedings of the CSEE, 2022, 42(17): 6316–6326 [14] 蒋东方, 贾跃龙, 鲁强, 等. 氢能在综合能源系统中的应用前景[J]. 中国电力, 2020, 53(5): 135–142 JIANG Dongfang, JIA Yuelong, LU Qiang, et al. Application prospect of hydrogen energy in integrated energy systems[J]. Electric Power, 2020, 53(5): 135–142 [15] SÁNCHEZ A, MARTÍN M. Optimal renewable production of ammonia from water and air[J]. Journal of Cleaner Production, 2018, 178: 325–342. [16] XU D, ZHOU B, WU Q W, et al. Integrated modelling and enhanced utilization of power-to-ammonia for high renewable penetrated multi-energy systems[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4769–4780. [17] ZHENG Y, YOU S, LI X M, et al. Data-driven robust optimization for optimal scheduling of power to methanol[J]. Energy Conversion and Management, 2022, 256: 115338. [18] 伍海华, 杨德平. 随机过程: 金融资产定价之应用[M]. 北京: 中国金融出版社, 2002. [19] 陈晓爽, 林今, 刘锋, 等. 新能源发电的伊藤随机过程模型[J]. 中国电机工程学报, 2020, 40(1): 83–95, 376 CHEN Xiaoshuang, LIN Jin, LIU Feng, et al. Itô stochastic process model for renewable generations[J]. Proceedings of the CSEE, 2020, 40(1): 83–95, 376 [20] ZHANG Y, KONG L Q. Photovoltaic power prediction based on hybrid modeling of neural network and stochastic differential equation[J]. ISA Transactions, 2022, 128: 181–206. [21] CHEN X S, LIN J, LIU F, et al. Optimal control of AGC systems considering non-gaussian wind power uncertainty[J]. IEEE Transactions on Power Systems, 2019, 34(4): 2730–2743. [22] CHEN X S, LIN J, LIU F, et al. Stochastic assessment of AGC systems under non-gaussian uncertainty[J]. IEEE Transactions on Power Systems, 2019, 34(1): 705–717. [23] OJO G, CAMARDA K. Sustainable ammonia production via electrolysis and haber-bosch process[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2022: 229–234. [24] 袁铁江, 万志, 王进君, 等. 考虑电解槽启停特性的制氢系统日前出力计划[J]. 中国电力, 2022, 55(1): 101–109 YUAN Tiejiang, WAN Zhi, WANG Jinjun, et al. The day-ahead output plan of hydrogen production system considering the start-stop characteristics of electrolytic cell[J]. Electric Power, 2022, 55(1): 101–109 [25] LI J R, LIN J, HEUSER P M, et al. Co-planning of regional wind resources-based ammonia industry and the electric network: a case study of inner Mongolia[J]. IEEE Transactions on Power Systems, 2022, 37(1): 65–80. [26] VERLEYSEN K, COPPITTERS D, PARENTE A, et al. How can power-to-ammonia be robust? optimization of an ammonia synthesis plant powered by a wind turbine considering operational uncertainties[J]. Fuel, 2020, 266: 117049. [27] QIU Y W, LIN J, LIU F, et al. Stochastic online generation control of cascaded run-of-the-river hydropower for mitigating solar power volatility[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4709–4722. [28] HISKENS I A, ALSEDDIQUI J. Sensitivity, approximation, and uncertainty in power system dynamic simulation[J]. IEEE Transactions on Power Systems, 2006, 21(4): 1808–1820. [29] ARMIJO J, PHILIBERT C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1541–1558. [30] SIDDIQUI O, ISHAQ H, CHEHADE G, et al. Experimental investigation of an integrated solar powered clean hydrogen to ammonia synthesis system[J]. Applied Thermal Engineering, 2020, 176: 115443. [31] PJM Data Viewer - Market clearing prices [EB/OL]. [2022-09-02](2023-03-01).https://dataviewer.pjm.com/. [32] LIN J, SUN Y Z, CHENG L, et al. Assessment of the power reduction of wind farms under extreme wind condition by a high resolution simulation model[J]. Applied Energy, 2012, 96: 21–32.
|