[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806–2819 ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806–2819 [2] 郭剑波. 新型电力系统面临的挑战以及有关机制思考[J]. 中国电力企业管理, 2021(25): 8–11 [3] 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55(5): 1–11 ZHOU Yuanbing, YANG Fang, YU Xiaoxiao, et al. Realization pathways and key problems of carbon neutrality in China’s energy and power system[J]. Electric Power, 2022, 55(5): 1–11 [4] 单葆国, 冀星沛, 姚力, 等. 能源高质量发展下中国电力供需格局演变趋势[J]. 中国电力, 2021, 54(11): 1–9, 18 SHAN Baoguo, JI Xingpei, YAO Li, et al. Evolving tendency of electric supply and demand pattern under the circumstances of high-quality energy development[J]. Electric Power, 2021, 54(11): 1–9, 18 [5] 张晋芳, 元博. “十四五”电力系统灵活性资源供需平衡分析[J]. 中国电力企业管理, 2020(19): 36–38 [6] 张宁, 卢静, 代红才. 源网荷储协调发展下我国电力系统灵活性资源展望[J]. 中国电力企业管理, 2020(16): 44–47 [7] 鲁宗相, 林弋莎, 乔颖, 等. 极高比例可再生能源电力系统的灵活性供需平衡[J]. 电力系统自动化, 2022, 46(16): 3–16 LU Zongxiang, LIN Yisha, QIAO Ying, et al. Flexibility supply-demand balance in power system with ultra-high proportion of renewable energy[J]. Automation of Electric Power Systems, 2022, 46(16): 3–16 [8] 中国电力圆桌项目课题组. 电力系统灵活性提升: 技术路径、经济性与政策建议[R] . 2022. [9] 北京大学能源研究院. 新能源为主体的新型电力系统的内涵与展望[R]. 2022. [10] 卢彬. 电力系统灵活性提升路径多[N]. 中国能源报, 2020-12-21(11). [11] 闫华光. 能源互联网背景下可调节负荷技术应用与展望[J]. 电力设备管理, 2020(5): 25, 32 YAN Huaguang. Application and prospect of adjustable load technology in the context of energy Internet[J]. Electric Power Equipment Management, 2020(5): 25, 32 [12] 王彩霞, 时智勇, 梁志峰, 等. 新能源为主体电力系统的需求侧资源利用关键技术及展望[J]. 电力系统自动化, 2021, 45(16): 37–48 WANG Caixia, SHI Zhiyong, LIANG Zhifeng, et al. Key technologies and prospects of demand-side resource utilization for power systems dominated by renewable energy[J]. Automation of Electric Power Systems, 2021, 45(16): 37–48 [13] 党东升, 韩松, 周珏, 等. 需求响应参与系统调峰研究综述[J]. 电力需求侧管理, 2017, 19(5): 13–17 DANG Dongsheng, HAN Song, ZHOU Jue, et al. Review of demand response participating in power system peak shifting[J]. Power Demand Side Management, 2017, 19(5): 13–17 [14] 德国能源署. 德国电力系统中的灵活性技术和措施[R]. 2021. [15] 景锐, 周越, 吴建中. 赋能零碳未来: 英国电力系统转型历程与发展趋势[J]. 电力系统自动化, 2021, 45(16): 87–98 JING Rui, ZHOU Yue, WU Jianzhong. Empowering zero-carbon future—experience and development trends of electric power system transition in the UK[J]. Automation of Electric Power Systems, 2021, 45(16): 87–98 [16] 张书华, 付林. 优先利用分布式能源及工业余热的多能互补供热模式[J]. 分布式能源, 2018, 3(1): 64–68 ZHANG Shuhua, FU Lin. Multi energy complementary heating mode with priority use of distributed energy and industrial waste heat[J]. Distributed Energy, 2018, 3(1): 64–68 [17] 李伟阳. 碳达峰碳中和, 热网电网协同一定是方向[N]. 中国能源报, 2021-6-29(1). [18] 曾爽, 梁安琪, 王立永, 等. 考虑光储型电热协同系统灵活性的多代理削峰填谷策略[J]. 中国电力, 2023, 56(2): 133–142 ZENG Shuang, LIANG Anqi, WANG Liyong, et al. Multi-agent peak shaving and valley filling strategy considering the flexibility of electric-thermal system with optical storage[J]. Electric Power, 2023, 56(2): 133–142 [19] 李健强, 余光正, 汤波, 等. 考虑风光利用率和含氢能流的多能流综合能源系统规划[J]. 电力系统保护与控制, 2021, 49(14): 11–20 LI Jianqiang, YU Guangzheng, TANG Bo, et al. Multi-energy flow integrated energy system planning considering wind and solar utilization and containing hydrogen energy flow[J]. Power System Protection and Control, 2021, 49(14): 11–20 [20] RAD F M, FUNG A S, ROSEN M A. An integrated model for designing a solar community heating system with borehole thermal storage[J]. Energy for Sustainable Development, 2017, 36: 6–15. [21] LANG Y F, XU D, LIU S Y, et al. A scheduling model for wind power consumption considering source-charge coordination of combined heat and power system in low-carbon environment[J]. IOP Conference Series:Materials Science and Engineering, 2020, 752(1): 012004. [22] WOGRIN S, GALBALLY D, RENESES J. Optimizing storage operations in medium- and long-term power system models[J]. IEEE Transactions on Power Systems, 2016, 31(4): 3129–3138. [23] 丁剑, 方晓松, 宋云亭, 等. 碳中和背景下西部新能源传输的电氢综合能源网构想[J]. 电力系统自动化, 2021, 45(24): 1–9 DING Jian, FANG Xiaosong, SONG Yunting, et al. Conception of electricity and hydrogen integrated energy network for renewable energy transmission in Western China under background of carbon neutralization[J]. Automation of Electric Power Systems, 2021, 45(24): 1–9 [24] 荆涛, 陈庚, 王子豪, 等. 风光互补发电耦合氢储能系统研究综述[J]. 中国电力, 2022, 55(1): 75–83 JING Tao, CHEN Geng, WANG Zihao, et al. Research overview on the integrated system of wind-solar hybrid power generation coupled with hydrogen-based energy storage[J]. Electric Power, 2022, 55(1): 75–83 [25] 陈岩, 靳伟, 王文宾, 等. 兼顾区域自律和消纳品质的配电网新能源消纳能力分析方法[J]. 中国电力, 2021, 54(9): 143–155 CHEN Yan, JIN Wei, WANG Wenbin, et al. Analyzing method of the absorption capability of new energy in distribution network with consideration of regional self-discipline and absorption quality[J]. Electric Power, 2021, 54(9): 143–155 [26] 中国工程院, 国网能源研究院. 我国碳达峰、碳中和战略及路径研究[R] . 2021. [27] 中国电力企业联合会. 电力行业碳达峰碳中和发展路径研究[R] . 2021. [28] 中国节能协会热泵专业委员会. 热泵助力碳中和白皮书[R] . 2021.
|