[1] 马腾飞. 多能互补微能源网综合需求响应研究[D]. 北京: 北京交通大学, 2019. MA Tengfei. Research on comprehensive demand response of multiple energy complementary-micro energy grid[D]. Beijing: Beijing Jiaotong University, 2019. [2] 蔡黎, 张权文, 代妮娜, 等. 规模化电动汽车接入主动配电网研究进展综述[J]. 智慧电力, 2021, 49(6): 75–82 CAI Li, ZHANG Quanwen, DAI Nina, et al. Review on research progress of large-scale electric vehicle access to active distribution network[J]. Smart Power, 2021, 49(6): 75–82 [3] WANG X Y, SUN C, WANG R T, et al. Two-stage optimal scheduling strategy for large-scale electric vehicles[J]. IEEE Access, 2020, 8: 13821–13832. [4] LI H P, WAN Z Q, HE H B. Constrained EV charging scheduling based on safe deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2427–2439. [5] 苏粟, 胡勇, 王玮, 等. 基于电动汽车无功补偿的配电网电压调控策略[J]. 电力系统自动化, 2017, 41(10): 72–81 SU Su, HU Yong, WANG Wei, et al. Voltage regulation strategy for distribution network based on reactive power compensation of electric vehicles[J]. Automation of Electric Power Systems, 2017, 41(10): 72–81 [6] 潘振宁, 张孝顺, 余涛, 等. 大规模电动汽车集群分层实时优化调度[J]. 电力系统自动化, 2017, 41(16): 96–104 PAN Zhenning, ZHANG Xiaoshun, YU Tao, et al. Hierarchical real-time optimized dispatching for large-scale clusters of electric vehicles[J]. Automation of Electric Power Systems, 2017, 41(16): 96–104 [7] 徐康仪. 基于动态实时电价的电动汽车集群分层优化调度[J]. 电力学报, 2020, 35(1): 69–75, 81 XU Kangyi. Hierarchical real-time scheduling optimization for electric vehicle cluster based on dynamic real-time electricity price[J]. Journal of Electric Power, 2020, 35(1): 69–75, 81 [8] 许刚, 张丙旭, 张广超. 电动汽车集群并网的分布式鲁棒优化调度模型[J]. 电工技术学报, 2021, 36(3): 565–578 XU Gang, ZHANG Bingxu, ZHANG Guangchao. Distributed and robust optimal scheduling model for large-scale electric vehicles connected to grid[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 565–578 [9] 姚伟锋, 赵俊华, 文福拴, 等. 基于双层优化的电动汽车充放电调度策略[J]. 电力系统自动化, 2012, 36(11): 30–37 YAO Weifeng, ZHAO Junhua, WEN Fushuan, et al. A charging and discharging dispatching strategy for electric vehicles based on bi-level optimization[J]. Automation of Electric Power Systems, 2012, 36(11): 30–37 [10] 黄一诺, 郭创新, 王力成, 等. 考虑用户满意度的电动汽车分群调度策略[J]. 电力系统自动化, 2015, 39(17): 183–191 HUANG Yinuo, GUO Chuangxin, WANG Licheng, et al. A cluster-based dispatch strategy for electric vehicles considering user satisfaction[J]. Automation of Electric Power Systems, 2015, 39(17): 183–191 [11] 赵书强, 周靖仁, 李志伟, 等. 基于出行链理论的电动汽车充电需求分析方法[J]. 电力自动化设备, 2017, 37(8): 105–112 ZHAO Shuqiang, ZHOU Jingren, LI Zhiwei, et al. EV charging demand analysis based on trip chain theory[J]. Electric Power Automation Equipment, 2017, 37(8): 105–112 [12] 王毅, 谷亿, 丁壮, 等. 基于模糊熵和集成学习的电动汽车充电需求预测[J]. 电力系统自动化, 2020, 44(3): 114–121 WANG Yi, GU Yi, DING Zhuang, et al. Charging demand forecasting of electric vehicle based on empirical mode decomposition-fuzzy entropy and ensemble learning[J]. Automation of Electric Power Systems, 2020, 44(3): 114–121 [13] 邓艺璇, 黄玉萍, 黄周春. 基于随机森林算法的电动汽车充放电容量预测[J]. 电力系统自动化, 2021, 45(21): 181–188 DENG Yixuan, HUANG Yuping, HUANG Zhouchun. Charging and discharging capacity forecasting of electric vehicles based on random forest algorithm[J]. Automation of Electric Power Systems, 2021, 45(21): 181–188 [14] CAO D, HU W H, ZHAO J B, et al. Reinforcement learning and its applications in modern power and energy systems: a review[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(6): 1029–1042. [15] 李航, 李国杰, 汪可友. 基于深度强化学习的电动汽车实时调度策略[J]. 电力系统自动化, 2020, 44(22): 161–167 LI Hang, LI Guojie, WANG Keyou. Real-time dispatch strategy for electric vehicles based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2020, 44(22): 161–167 [16] BASHASH S, FATHY H K. Transport-based load modeling and sliding mode control of plug-In electric vehicles for robust renewable power tracking[J]. IEEE Transactions on Smart Grid, 2012, 3(1): 526–534. [17] 王永真, 张宁, 关永刚, 等. 当前能源互联网与智能电网研究选题的继承与拓展[J]. 电力系统自动化, 2020, 44(4): 1–7 WANG Yongzhen, ZHANG Ning, GUAN Yonggang, et al. Inheritance and expansion analysis of research topics between energy Internet and smart grid[J]. Automation of Electric Power Systems, 2020, 44(4): 1–7 [18] ZHANG X S, YU T, YANG B, et al. Virtual generation tribe based robust collaborative consensus algorithm for dynamic generation command dispatch optimization of smart grid[J]. Energy, 2016, 101: 34–51. [19] 郭明星, 吕冉, 费斐, 等. 考虑电动汽车和需求响应的电-热-水多能耦合系统经济调度[J]. 中国电力, 2022, 55(12): 105–111 GUO Mingxing, LV Ran, FEI Fei, et al. Economic scheduling of electric-heat-water multi-energy coupling systems considering electric vehicles and demand response[J]. Electric Power, 2022, 55(12): 105–111 [20] 陈岩, 靳伟, 王文宾, 等. 基于电动汽车分群的“风-网-车”联合消纳调度策略[J]. 中国电力, 2021, 54(4): 107–118 CHEN Yan, JIN Wei, WANG Wenbin, et al. Scheduling strategy for “wind-network-vehicle” joint accommodation based on electric vehicle clustering[J]. Electric Power, 2021, 54(4): 107–118 [21] 陈浩, 胡俊杰, 袁海峰, 等. 计及配电网拥塞的集群电动汽车参与二次调频方法研究[J]. 中国电力, 2021, 54(12): 162–169 CHEN Hao, HU Junjie, YUAN Haifeng, et al. Research on supplementary frequency regulation with aggregated electric vehicles considering distribution network congestion[J]. Electric Power, 2021, 54(12): 162–169 [22] 田艳丰, 王顺, 王哲, 等. 基于粒子群算法改进极限学习机的风电功率短期预测[J]. 电器与能效管理技术, 2022(3): 39–44, 76 TIAN Yanfeng, WANG Shun, WANG Zhe, et al. Short term prediction of wind power based on nuclear improvement to reduce particles of learning machines[J]. Electrical & Energy Management Technology, 2022(3): 39–44, 76 |