[1] PAGE C H. Reactive power in nonsinusoidal situations[J]. IEEE Transactions on Instrumentation and Measurement, 1980, 29(4): 420–423. [2] DEPENBROCK M, STAUDT V, WREDE H. A theoretical investigation of original and modified instantaneous power theory applied to four-wire systems[J]. IEEE Transactions on Industry Applications, 2003, 39(4): 1160–1168. [3] DEPENBROCK M. The FBD-method, a generally applicable tool for analyzing power relations[J]. IEEE Transactions on Power Systems, 1993, 8(2): 381–387. [4] DEPENBROCK M, STAUDT V. The FBD-method as tool for compensating total nonactive currents[C]//8 th International Conference on Harmonics and Quality of Power. Proceedings. Athens, Greece. IEEE, 2002: 320–324. [5] 王清亮, 宋曦, 王旭东, 等. 背景谐波电压环境下的负载谐波电流检测方法[J]. 电力系统保护与控制, 2022, 50(16): 58–65 WANG Qingliang, SONG Xi, WANG Xudong, et al. A load harmonic current detection method in a background harmonic voltage environment[J]. Power System Protection and Control, 2022, 50(16): 58–65 [6] CZARNECKI L S. Considerations on the reactive power in nonsinusoidal situations[J]. IEEE Transactions on Instrumentation and Measurement, 1985, 34(3): 399–404. [7] CZARNECKI L S. What is wrong with the Budeanu concept of reactive and distortion power and why it should be abandoned[J]. IEEE Transactions on Instrumentation and Measurement, 1987, 36(3): 834–837. [8] 宋一凡, 赵贺, 沈俊言, 等. GB/T 14549—93与IEEE std. 519: 2014谐波电流限值确定方法对比[J]. 中国电力, 2022, 55(7): 42–48 SONG Yifan, ZHAO He, SHEN Junyan, et al. Comparison of harmonic current limit determination methods between GB/T 14549—93 and IEEE std. 519: 2014[J]. Electric Power, 2022, 55(7): 42–48 [9] WILLEMS J L. Budeanu’s reactive power and related concepts revisited[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(4): 1182–1186. [10] AKAGI H, KANAZAWA Y, NABAE A. Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. IEEE Transactions on Industry Applications, 1984, 20(3): 625–630. [11] SOARES V, VERDELHO P, MARQUES G D. An instantaneous active and reactive current component method for active filters[J]. IEEE Transactions on Power Electronics, 2000, 15(4): 660–669. [12] HERRERA R S, SALMERÓN P, KIM H. Instantaneous reactive power theory applied to active power filter compensation: different approaches, assessment, and experimental results[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1): 184–196. [13] 赵贺. 评“瞬时无功理论”和方法[J]. 中国电机工程学报, 2014, 34(增刊1): 47–53 ZHAO He. Instantaneous reactive power theory and methods[J]. Proceedings of the CSEE, 2014, 34(S1): 47–53 [14] CAVALLINI A, MONTANARI G C. Compensation strategies for shunt active-filter control[J]. IEEE Transactions on Power Electronics, 1994, 9(6): 587–593. [15] RAFIEI S M R, TOLIYAT H A, GHAZI R, et al. An optimal and flexible control strategy for active filtering and power factor correction under non-sinusoidal line voltages[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 297–305. [16] MONTERO M I M, CADAVAL E R, GONZALEZ F B. Comparison of control strategies for shunt active power filters in three-phase four-wire systems[J]. IEEE Transactions on Power Electronics, 2007, 22(1): 229–236. [17] 刘可, 王轩, 王杨, 等. 静止无功发生器谐波模型及其对谐振影响分析[J]. 中国电力, 2022, 55(9): 174–182 LIU Ke, WANG Xuan, WANG Yang, et al. Harmonic model of static var generator and analysis of its resonance influence[J]. Electric Power, 2022, 55(9): 174–182 [18] 朱亮亮, 陈洁, 王小军, 等. 基于改进MMC的静止无功发生器[J]. 南方电网技术, 2021, 15(7): 47–53 ZHU Liangliang, CHEN Jie, WANG Xiaojun, et al. Static VAR generator based on improved MMC[J]. Southern Power System Technology, 2021, 15(7): 47–53 [19] 朱宏超, 沈轶君, 熊鸿韬, 等. 调相机与静态无功补偿装置的容量配置和协调控制策略[J]. 电力科学与技术学报, 2021, 36(6): 47–55 ZHU Hongchao, SHEN Yijun, XIONG Hongtao, et al. Capacity configuration and coordinated control strategy of synchronous condensers and static reactive power compensation devices[J]. Journal of Electric Power Science and Technology, 2021, 36(6): 47–55 [20] MENTI A, ZACHARIAS T, MILIAS-ARGITIS J. Geometric algebra: a powerful tool for representing power under nonsinusoidal conditions[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2007, 54(3): 601–609. [21] CASTILLA M, BRAVO J C, ORDONEZ M, et al. The geometric algebra as a power theory analysis tool[C]//2008 International School on Nonsinusoidal Currents and Compensation. Lagow, Poland. IEEE, 2008: 1–7. [22] CASTILLA M, BRAVO J C, MONTAÑO J C, et al. Considerations on the non-active power using geometric algebra[C]//2011 International Conference on Power Engineering, Energy and Electrical Drives. Malaga, Spain. IEEE, 2011: 1–4. [23] LEV-ARI H, STANKOVIĆ A M. A geometric algebra approach to decomposition of apparent power in general polyphase networks[C]//41 st North American Power Symposium. Starkville, MS, USA. IEEE, 2010: 1–6. [24] 徐灵敏, 叶伟, 李秦川. 并联机器人逆动力学建模的几何代数方法[J]. 机械工程学报, 2022, 58(7): 1–11 XU Lingmin, YE Wei, LI Qinchuan. Geometric algebra-based method for inverse dynamic modeling of parallel robots[J]. Journal of Mechanical Engineering, 2022, 58(7): 1–11 [25] CHAPPELL J M, DRAKE S P, SEIDEL C L, et al. Geometric algebra for electrical and electronic engineers[J]. Proceedings of the IEEE, 2014, 102(9): 1340–1363. [26] CASTRO-NUNEZ M, CASTRO-PUCHE R. Advantages of geometric algebra over complex numbers in the analysis of networks with nonsinusoidal sources and linear loads[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2012, 59(9): 2056–2064. [27] 陈征, 胡鹏飞, 戴立宇, 等. 基于锁相环的并网VSC暂态失稳机理与控制方法[J]. 中国电力, 2022, 55(10): 77–86 CHEN Zheng, HU Pengfei, DAI Liyu, et al. Transient instability mechanism and control method of PLL-based grid-connected VSC[J]. Electric Power, 2022, 55(10): 77–86 [28] 王凌云, 王红兵, 黄云辉, 等. 弱电网不对称故障下正负序电流控制耦合作用对DFIG稳定性影响分析[J]. 智慧电力, 2022, 50(10): 15–22 WANG Lingyun, WANG Hongbing, HUANG Yunhui, et al. Coupling effect analysis of positive and negative sequence current control on DFIG stability under asymmetric fault in weak grid[J]. Smart Power, 2022, 50(10): 15–22
|