[1] MOHSENI-BONAB S M, RABIEE A, MOHAMMADI-IVATLOO B, et al. A two-point estimate method for uncertainty modeling in multi-objective optimal reactive power dispatch problem[J]. International Journal of Electrical Power & Energy Systems, 2016, 75: 194–204. [2] CAN?IZARES C A, BHATTACHARYA K, EL-SAMAHY I, et al. Re-defining the reactive power dispatch problem in the context of competitive electricity markets[J]. IET Generation, Transmission & Distribution, 2010, 4(2): 162. [3] LU F C, HSU Y Y. Fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation[J]. IEEE Transactions on Power Systems, 1997, 12(2): 681–688. [4] LIANG R H, CHENG C K. Dispatch of main transformer ULTC and capacitors in a distribution system[J]. IEEE Transactions on Power Delivery, 2001, 16(4): 625–630. [5] LIU Y T, ZHANG P, QIU X Z. Optimal volt/var control in distribution systems[J]. International Journal of Electrical Power & Energy Systems, 2002, 24(4): 271–276. [6] 刘明波, 朱春明, 钱康龄, 等. 计及控制设备动作次数约束的动态无功优化算法[J]. 中国电机工程学报, 2004, 24(3): 34–40 LIU Mingbo, ZHU Chunming, QIAN Kangling, et al. Dynamic reactive-power optimization algorithm incorporating action number constraints of control devices[J]. Proceedings of the CSEE, 2004, 24(3): 34–40 [7] 赖永生, 刘明波. 电力系统动态无功优化问题的快速解耦算法[J]. 中国电机工程学报, 2008, 28(7): 32–39 LAI Yongsheng, LIU Mingbo. Fast decomposition algorithm for solution of dynamic reactive power optimization problem in power systems[J]. Proceedings of the CSEE, 2008, 28(7): 32–39 [8] 李子健, 郭佩乾, 马宁宁, 等. 融合双重策略粒子群算法的分布式电源配网无功优化[J]. 南方电网技术, 2022, 16(6): 14–22, 81 LI Zijian, GUO Peiqian, MA Ningning, et al. Reactive power optimization for distribution system with DG by particle swarm optimization algorithm integrating dual strategies[J]. Southern Power System Technology, 2022, 16(6): 14–22, 81 [9] 崔挺, 李雪萍, 颜畅, 等. 基于模型预测控制的风电场故障穿越有功无功优化控制策略[J]. 电力系统保护与控制, 2022, 50(2): 12–20 CUI Ting, LI Xueping, YAN Chang, et al. Active and reactive power optimization control strategy for wind farm fault ride-through based on model predictive control[J]. Power System Protection and Control, 2022, 50(2): 12–20 [10] 王文宾, 石磊磊, 贾清泉, 等. 低压光伏集群无功运行模式优化[J]. 电力科学与技术学报, 2021, 36(1): 117–126 WANG Wenbin, SHI Leilei, JIA Qingquan, et al. Study on reactive power operation mode optimization of low voltage photovoltaic cluster[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 117–126 [11] 王韶, 张煜成, 周鑫, 等. 基于一种改进蚁群算法的动态无功优化[J]. 电力系统保护与控制, 2012, 40(17): 100–104, 109 WANG Shao, ZHANG Yucheng, ZHOU Xin, et al. Dynamic reactive power optimization based on a modified ant colony algorithm[J]. Power System Protection and Control, 2012, 40(17): 100–104, 109 [12] 杨亘烨, 孙荣富, 丁然, 等. 计及光伏多状态调节能力的配电网多时间尺度电压优化[J]. 中国电力, 2022, 55(3): 105–114 YANG Genye, SUN Rongfu, DING Ran, et al. Multi time scale reactive power and voltage optimization of distribution network considering photovoltaic multi state regulation capability[J]. Electric Power, 2022, 55(3): 105–114 [13] 沈茂亚, 丁晓群, 王宽, 等. 自适应免疫粒子群算法在动态无功优化中应用[J]. 电力自动化设备, 2007, 27(1): 31–35 SHEN Maoya, DING Xiaoqun, WANG Kuan, et al. Application of adaptive immune PSO in dynamic reactive power optimization[J]. Electric Power Automation Equipment, 2007, 27(1): 31–35 [14] 颜伟, 田甜, 张海兵, 等. 考虑相邻时段投切次数约束的动态无功优化启发式策略[J]. 电力系统自动化, 2008, 32(10): 71–75 YAN Wei, TIAN Tian, ZHANG Haibing, et al. Heuristic strategy for dynamic reactive power optimization incorporating action time constraints between adjacent time intervals[J]. Automation of Electric Power Systems, 2008, 32(10): 71–75 [15] MANTOVANI J R S, MODESTO S A G, GARCIA A V. VAr planning using genetic algorithm and linear programming[J]. IEE Proceedings-Generation, Transmission and Distribution, 2001, 148(3): 257. [16] 陈建华, 阎帅, 张瑶, 等. 基于IPM-intPSO的两阶段动态无功优化算法[J]. 电力自动化设备, 2020, 40(3): 174–180 CHEN Jianhua, YAN Shuai, ZHANG Yao, et al. Two-stage dynamic reactive power optimization algorithm based on IPM-intPSO[J]. Electric Power Automation Equipment, 2020, 40(3): 174–180 [17] 陈倩, 王维庆, 王海云. 基于需求侧响应的主动配电网双层优化方法[J]. 电力系统保护与控制, 2022, 50(16): 1–13 CHEN Qian, WANG Weiqing, WANG Haiyun. Bi-level optimization model of an active distribution network based on demand response[J]. Power System Protection and Control, 2022, 50(16): 1–13 [18] 林少华, 吴杰康, 莫超, 等. 基于二阶锥规划的含分布式电源配电网动态无功分区与优化方法[J]. 电网技术, 2018, 42(1): 238–246 LIN Shaohua, WU Jiekang, MO Chao, et al. Dynamic partition and optimization method for reactive power of distribution networks with distributed generation based on second-order cone programming[J]. Power System Technology, 2018, 42(1): 238–246 [19] 孙田, 邹鹏, 杨知方, 等. 动态无功优化的多阶段求解方法[J]. 电网技术, 2016, 40(6): 1804–1810 SUN Tian, ZOU Peng, YANG Zhifang, et al. A multi-stage solution approach for dynamic reactive power optimization[J]. Power System Technology, 2016, 40(6): 1804–1810 [20] 丁涛, 郭庆来, 柏瑞, 等. 松弛MPEC和MIQP的启发-校正两阶段动态无功优化算法[J]. 中国电机工程学报, 2014, 34(13): 2100–2107 DING Tao, GUO Qinglai, BAI Rui, et al. Two-stage heuristic-correction for dynamic reactive power optimization based on relaxation-MPEC and MIQP[J]. Proceedings of the CSEE, 2014, 34(13): 2100–2107 [21] 张进, 胡存刚, 芮涛. 基于交替方向乘子法的主动配电网日前两阶段分布式优化调度策略[J]. 中国电力, 2021, 54(5): 91–100 ZHANG Jin, HU Cungang, RUI Tao. A day-ahead two-stage distributed optimal scheduling method for active distribution network based on ADMM[J]. Electric Power, 2021, 54(5): 91–100 [22] YANG Z F, ZHONG H W, XIA Q, et al. Optimal power flow based on successive linear approximation of power flow equations[J]. IET Generation, Transmission & Distribution, 2016, 10(14): 3654–3662. [23] 刘方. 关于电力系统动态最优潮流的几种模型与算法研究[D]. 重庆: 重庆大学, 2007. LIU Fang. Study on some models and methods for dynamic optimal power flow of electrical power system[D]. Chongqing: Chongqing University, 2007. [24] 余娟, 颜伟, 徐国禹, 等. 基于预测-校正原对偶内点法的无功优化新模型[J]. 中国电机工程学报, 2005, 25(11): 146–151 YU Juan, YAN Wei, XU Guoyu, et al. A new model of reactive optimization based on predictor corrector primal dual interior point method[J]. Proceedings of the CSEE, 2005, 25(11): 146–151 [25] XIE K, SONG Y H. Dynamic optimal power flow by interior point methods[J]. IEE Proceedings - Generation, Transmission and Distribution, 2001, 148(1): 76–84.
|