[1] 赵畹君. 高压直流输电工程技术[M]. 北京: 中国电力出版社, 2004. [2] 张晋芳, 郑宽, 黄瀚, 等. 特高压直流主送新能源技术经济研究[J]. 中国电力, 2017, 50(6): 152-157 ZHANG Jinfang, ZHENG Kuan, HUANG Han, et al. The technical and economic analysis on new energy mainly transmitted by UHV DC channels[J]. Electric Power, 2017, 50(6): 152-157 [3] 潘尔生, 李晖, 肖晋宇, 等. 考虑大范围多种类能源互补的中国西部清洁能源开发外送研究[J]. 中国电力, 2018, 51(9): 158-164 PAN Ersheng, LI Hui, XIAO Jinyu, et al. Research on the development and transmission of clean energy in Western China considering wide range coordination of multi-energy[J]. Electric Power, 2018, 51(9): 158-164 [4] 文俊, 殷威扬, 温家良, 等. 高压直流输电系统换流器技术综述[J]. 南方电网技术, 2015, 9(2): 16-24 WEN Jun, YIN Weiyang, WEN Jialiang, et al. Review of converter technology for HVDC transmission systems[J]. Southern Power System Technology, 2015, 9(2): 16-24 [5] 吕文杰, 储佳伟, 吴健, 等. 基于模型预测控制的VSC-HVDC自适应控制策略[J]. 电力科学与技术学报, 2020, 35(1): 122-129. LV Wenjie, CHU Jiawei, WU Jian, et al. Investigation of a VSC-HVDC adaptive control strategy based on the model prediction strategy[J]. Journal of Electric Power Science and Technology, 2020, 35(1): 122-129. [6] 徐政, 陈海荣. 电压源换流器型直流输电技术综述[J]. 高电压技术, 2007, 33(1): 1-10 XU Zheng, CHEN Hairong. Review and applications of VSC HVDC[J]. High Voltage Engineering, 2007, 33(1): 1-10 [7] 李广凯, 李庚银, 梁海峰, 等. 新型混合直流输电方式的研究[J]. 电网技术, 2006, 30(4): 82-86 LI Guangkai, LI Gengyin, LIANG Haifeng, et al. Research on a novel hybrid HVDC system[J]. Power System Technology, 2006, 30(4): 82-86 [8] GUO C Y, YANG Z Z, NING L R, et al. A novel coordinated control approach for commutation failure mitigation in hybrid parallel-HVDC system with MMC-HVDC and LCC-HVDC[J]. Electric Power Components and Systems, 2017, 45(16): 1773-1782. [9] 徐政, 王世佳, 李宁璨, 等. 适用于远距离大容量架空线路的LCC-MMC串联混合型直流输电系统[J]. 电网技术, 2016, 40(1): 55-63 XU Zheng, WANG Shijia, LI Ningcan, et al. A LCC and MMC series hybrid HVDC topology suitable for bulk power overhead line transmission[J]. Power System Technology, 2016, 40(1): 55-63 [10] 许烽, 徐政. 基于LCC和FHMMC的混合型直流输电系统[J]. 高电压技术, 2014, 40(8): 2520-2530 XU Feng, XU Zheng. Hybrid HVDC system based on LCC and FHMMC[J]. High Voltage Engineering, 2014, 40(8): 2520-2530 [11] 夏冰, 李耀华, 李子欣, 等. 基于PWM-CSC的混合直流输电系统功率控制策略研究[J]. 电工电能新技术, 2018, 37(7): 17-24 XIA Bing, LI Yaohua, LI Zixin, et al. Research on control method of PWM-CSC based hybrid HVDC transmission system[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(7): 17-24 [12] 尹晓东. 基于电流源型PWM换流器的柔性直流电网研究[D]. 济南: 山东大学, 2019: 22-47. YIN Xiaodong. Study on flexible DC grid based on PWM current source converter[D]. Jinan: Shandong University, 2019: 22-47. [13] GIRALDO E, GARCES A. An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG[J]. IEEE Transactions on Power Systems, 2014, 29(3): 1446-1453. [14] DAI J Y, XU D W, WU B. A novel control scheme for current-source-converter-based PMSG wind energy conversion systems[J]. IEEE Transactions on Power Electronics, 2009, 24(4): 963-972. [15] NISHIKATA S, TATSUTA F. A new interconnecting method for wind turbine/generators in a wind farm and basic performances of the integrated system[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 468-475. [16] JOVCIC D. Offshore wind farm with a series multiterminal CSI HVDC[J]. Electric Power Systems Research, 2008, 78(4): 747-755. [17] 卢东斌, 田杰, 李海英, 等. 电网换相换流器和电压源换流器串联组成的混合直流换流器控制和保护研究[J]. 电力系统保护与控制, 2020, 48(15): 92-101 LU Dongbin, TIAN Jie, LI Haiying, et al. Control and protection of series hybrid DC converters with a line-commutated converter and a voltage source converter[J]. Power System Protection and Control, 2020, 48(15): 92-101 [18] POPAT M, WU B, LIU F R, et al. Coordinated control of cascaded current-source converter based offshore wind farm[J]. IEEE Transactions on Sustainable Energy, 2012, 3(3): 557-565. [19] Thomas Stiasny, VasiLeios Kappatos, ThoMas Setz, et al. IGCT—更高功率处理能力的正确选择[J]. 大功率变流技术, 2015(6): 1-7, 24 STIASNY T, KAPPATOS V, SETZ T, et al. Where higher power handling capability is required: IGCT is the right choice[J]. High Power Converter Technology, 2015(6): 1-7, 24 [20] 曾嵘, 赵彪, 余占清, 等. IGCT在直流电网中的应用展望[J]. 中国电机工程学报, 2018, 38(15): 4307-4317, 4631 ZENG Rong, ZHAO Biao, YU Zhanqing, et al. Development and prospect of IGCT power device in DC grid[J]. Proceedings of the CSEE, 2018, 38(15): 4307-4317, 4631 [21] VEMULAPATI U, ARNOLD M, ANTONIAZZI A, et al. Reverse blocking IGCT optimised for 1 kV DC bi-directional solid state circuit breaker[J]. IET Power Electronics, 2015, 8(12): 2308-2314. [22] PEREZ M A, LIZANA R, AZOCAR C, et al. Modular multilevel cascaded converter based on current source H-bridges cells[C]//IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society. Montreal, QC, Canada. IEEE, 2012: 3443-3448. [23] LIANG J Q, NAMI A, DIJKHUIZEN F, et al. Current source modular multilevel converter for HVDC and FACTS[C]//IEEE EPE. Lille, France: IEEE, 2013. [24] BAIER C R, MELIN P E, GUZMAN J I, et al. Current-source cascaded multilevel converters based on single-phase power cells[C]//IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. Vienna, Austria. IEEE, 2013: 6207-6212. [25] 李沛元. 基于RB-IGBT的电流源型双馈风电变流器[D]. 上海: 上海交通大学, 2016. LI Peiyuan. Research of the DIFG wind power systems with RB-IGBT based current source converters [D]. Shanghai: Shanghai Jiao Tong University, 2016. [26] 严干贵, 钟诚, 苑春明. 多电平电流源变流器研究综述[J]. 电网技术, 2015, 39(7): 1940-1947 YAN Gangui, ZHONG Cheng, YUAN Chunming. Review of multi-level current source converters research[J]. Power System Technology, 2015, 39(7): 1940-1947 [27] 鲍建宇, 鲍卫兵, 张仲超. 三相电流型多电平变流器的自均流特性[J]. 高电压技术, 2009, 35(6): 1457-1461 BAO Jianyu, BAO Weibing, ZHANG Zhongchao. Natural current balancing of a three-phase multilevel current-source inverter[J]. High Voltage Engineering, 2009, 35(6): 1457-1461 [28] 鲍建宇, 鲍卫兵, 张仲超. 单相电流型多电平变流器自均流特性[J]. 电工技术学报, 2010, 25(4): 89-94 BAO Jianyu, BAO Weibing, ZHANG Zhongchao. Natural current-balancing performance of a kind of single-phase multi-level current-source inverter[J]. Transactions of China Electrotechnical Society, 2010, 25(4): 89-94 [29] BHESANIYA M M, SHUKLA A. Current source modular multilevel converter: detailed analysis and STATCOM application[J]. IEEE Transactions on Power Delivery, 2016, 31(1): 323-333. [30] BAI Z H, ZHANG Z C. Conformation of multilevel current source converter topologies using the duality principle[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2260-2267. [31] WOLFS P J, LEDWICH G F, KWONG K C. The application of the duality principle to nonplanar circuits[J]. IEEE Transactions on Power Electronics, 1993, 8(2): 104-111. [32] 伍小杰, 董瑶, 戴鹏, 等. 对偶原理在电力电子电路中的应用[J]. 电气电子教学学报, 2007, 29(5): 33-37 WU Xiaojie, DONG Yao, DAI Peng, et al. Application of duality principle in power electronic circuits[J]. Journal of Electrical & Electronic Education, 2007, 29(5): 33-37 [33] POPAT M, WU B, ZARGARI N R. DC link current control of cascaded current source converter based offshore wind farms[C]//2011 IEEE International Electric Machines & Drives Conference (IEMDC). Niagara Falls, ON, Canada. IEEE, 2011: 807-812. [34] 张亚玉. 电流源型变频系统PWM整流器研究[D]. 合肥: 合肥工业大学, 2011. ZHANG Yayu. Research on PWM current source rectifier for current source converter[D]. Hefei: Hefei University of Technology.2011. [35] 朱晓荣. 电流型PWM整流器及其非线性控制策略的研究[D]. 保定: 华北电力大学(河北), 2009. ZHU Xiaorong. Research on current-source PWM rectifier and its nonlinear control strategies[D]. Baoding, China: North China Electric Power University, 2009. [36] 程启明, 程尹曼, 王鹤霖, 等. 三相电流型PWM整流器的控制方法发展综述[J]. 华东电力, 2013, 41(2): 405-411 CHENG Qiming, CHENG Yinman, WANG Helin, et al. Development review of control methods for three-phase current-source PWM rectifiers[J]. East China Electric Power, 2013, 41(2): 405-411 [37] BAI Z H, ZHANG Z C, ZHANG Y. A generalized three-phase multilevel current source inverter with carrier phase-shifted SPWM[C]//2007 IEEE Power Electronics Specialists Conference. Orlando, FL, USA. IEEE, 2007: 2055-2060. [38] AGUIRRE M P, CALVINO L, VALLA M I. Multilevel current-source inverter with FPGA control[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 3-10. [39] 李俊刚. 多电平电流源变流器调制与控制技术的研究[D]. 上海: 上海电力学院, 2018. LI Jungang. Research on the modulation and control technique of multilevel current source converter[D]. Shanghai: Shanghai University of Electric Power, 2018. [40] ESPINOZA J R, JOOS G. Current-source converter on-line pattern generator switching frequency minimization[J]. IEEE Transactions on Industrial Electronics, 1997, 44(2): 198-206. [41] XU D, WU B. Multilevel current source inverters with phase shifted trapezoidal PWM[C]//2005 IEEE 36th Power Electronics Specialists Conference. Recife, Brazil. IEEE, 2005: 2540-2546. [42] GUZMAN J I, PEREZ M A, MELIN P E, et al. Predictive control of modular current source converters[C]//IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. Dallas, TX, USA. IEEE, 2014: 1720-1726. [43] 郭小强. 三相H7电流源光伏逆变器共模电流抑制研究[J]. 中国电机工程学报, 2016, 36(17): 4665-4672 GUO Xiaoqiang. Common mode current suppression for transformerless three-phase H7 current source photovoltaic inverters[J]. Proceedings of the CSEE, 2016, 36(17): 4665-4672 [44] 李亚斌, 李和明, 彭咏龙. 基于矢量合成原理的三相电流型SVPWM整流器多电平技术[J]. 中国电机工程学报, 2007, 27(31): 104-109 LI Yabin, LI Heming, PENG Yonglong. Research on multi-level technique of three-phase current source SVPWM rectifier based on vector synthesis scheme[J]. Proceedings of the CSEE, 2007, 27(31): 104-109 [45] LI Y W, WU B, XU D, et al. Space vector sequence investigation and synchronization methods for active front-end rectifiers in high-power current-source drives[J]. IEEE Transactions on industrial Electronics, 2008, 55(3): 1022-1034. [46] GUZMAN J I, ESPINOZA J R, MORAN L A, et al. Selective harmonic elimination in multimodule three-phase current-source converters[J]. IEEE Transactions on Power Electronics, 2010, 25(1): 44-53. [47] WANG L Q, WANG Y. Multilevel current source converter based on SHEPWM[C]//2008 International Conference on Electrical Machines and Systems. Wuhan, China. IEEE, 2008: 1905-1908. [48] GUZMAN J I, MELIN P E, ESPINOZA J R, et al. Digital implementation of selective harmonic elimination techniques in modular current source rectifiers[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 1167-1177. [49] KARSHENAS H R, KOJORI H, DEWAN S. Generalized techniques of selective harmonic elimination and current control in current source inverters/converters[J]. IEEE Transactions on Power Electronics, 1995, 10(5): 566-573. [50] WU B, NARIMANI M. High-power converters and AC drives[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. [51] 薛英林, 徐政, 潘武略, 等. 电流源型混合直流输电系统建模与仿真[J]. 电力系统自动化, 2012, 36(9): 98-103 XUE Yinglin, XU Zheng, PAN Wulue, et al. Modeling and simulation for a hybrid current source converter high voltage direct current transmission system[J]. Automation of Electric Power Systems, 2012, 36(9): 98-103
|