[1] 吕蒙, 杨恕非, 宁罡, 等. 350 MW空冷发电机组主辅机循环水切换的可行性研究[J]. 电站系统工程, 2017, 33(4): 58–60, 63 LV Meng, YANG Shufei, NING Gang, et al. Feasibility study of 350 MW air-cooled generator main/auxiliary machines circulating water[J]. Power System Engineering, 2017, 33(4): 58–60, 63 [2] 唐革风, 苏铭德, 符松. 横向风影响下空冷塔内外流场的数值研究[J]. 空气动力学学报, 1997, 15(3): 328–336 TANG Gefeng, SU Mingde, FU Song. Numerical study on flow field of a dry-cooling tower in a cross wind[J]. Acta Aerodynamica Sinica, 1997, 15(3): 328–336 [3] 赵振国, 石金玲, 魏庆鼎, 等. 自然风对空冷塔的不利影响及其改善措施[J]. 应用科学学报, 1998, 16(1): 112–120 ZHAO Zhenguo, SHI Jinling, WEI Qingding, et al. The engineering improvement for weakening the bad effect of natural wind on the dry cooling towers[J]. Journal of Applied Sciences, 1998, 16(1): 112–120 [4] 杨凯. 600 MW间接空冷机组空冷塔散热器冬季防冻优化[J]. 电力安全技术, 2018, 20(10): 60–62 [5] 韩中合, 张垚鹏, 李恒凡. 侧风环境下间接空冷塔百叶窗开度调节方案[J]. 汽轮机技术, 2018, 60(1): 41–44, 48 HAN Zhonghe, ZHANG Yaopeng, LI Hengfan. Adjustment scheme of louver opening degree under crosswind environment of indirect air cooling tower[J]. Turbine Technology, 2018, 60(1): 41–44, 48 [6] 王晗昀. 基于CFX的百叶窗开度对间接空冷散热器影响的研究[J]. 发电设备, 2018, 32(6): 387–393 WANG Hanyun. Influence analysis of shutter opening on the performance of an indirect air-cooling radiator based on CFX[J]. Power Equipment, 2018, 32(6): 387–393 [7] 翟英俊, 王威, 顾红方, 等. 提高核电间接空冷塔塔群散热能力的优化研究[J]. 给水排水, 2017, 43(增刊2): 72–74 [8] 赵云驰, 张荣勇. 核电厂间接空冷塔防风措施研究[J]. 给水排水, 2017, 43(增刊2): 75–79 [9] 黄俊. 改善间接空冷塔传热性能的方案与研究[J]. 电站辅机, 2017, 38(4): 22–27 HUANG Jun. The scheme and study of improving the heat transfer performance of indirect air cooling tower[J]. Power Station Auxiliary Equipment, 2017, 38(4): 22–27 [10] 王蓝婧, 刘康, 付文锋, 等. 660 MW SCAL型间接空冷塔夏季安全运行改造方案研究[J]. 动力工程学报, 2018, 38(1): 55–61, 68 WANG Lanjing, LIU Kang, FU Wenfeng, et al. Retrofit schemes for safety operation of a 660 MW SCAL indirect dry cooling tower during summer period[J]. Journal of Chinese Society of Power Engineering, 2018, 38(1): 55–61, 68 [11] 石磊, 石诚, 汤东升, 等. 间接空冷散热器及空冷钢塔流动和传热数值研究[J]. 华东电力, 2012, 40(4): 663–666 SHI Lei, SHI Cheng, TANG Dongsheng, et al. Numerical research on flow and heat transfer characteristics of air cooling steel tower with surface indirect air cooled radiator[J]. East China Electric Power, 2012, 40(4): 663–666 [12] 赵顺安, 黄春花. 间接空冷塔气体流态物理模型试验研究报告[R]. 北京: 中国水利水电科学研究院, 2011: 22-45. [13] 黄春花, 赵顺安. 间接空冷系统塔型优化研究[J]. 中国水利水电科学研究院学报, 2011(4): 313–318 [14] 赵顺安. 排烟冷却塔的一维设计计算方法[J]. 水利学报, 2005, 36(11): 1331–1334 ZHAO Shunan. 1-D design method of natural cooling tower via which flue gas discharged[J]. Journal of Hydraulic Engineering, 2005, 36(11): 1331–1334 [15] 陈凯华, 宋存义, 李强, 等. 排烟冷却塔内流场的数值分析[J]. 电站系统工程, 2008, 24(5): 27–30 CHEN Kaihua, SONG Cunyi, LI Qiang, et al. Numerical analysis of aerodynamic field in cooling tower with flue gas injection[J]. Power System Engineering, 2008, 24(5): 27–30 [16] 张仁锋, 苏燊燊, 马继军, 等. 烟塔合一的环境影响实证研究[J]. 中国电力, 2018, 51(7): 162–169 ZHANG Renfeng, SU Shenshen, MA Jijun, et al. An empirical study on environmental impact of integration of the natural draft cooling tower and the flue gas[J]. Electric Power, 2018, 51(7): 162–169 [17] 王智, 付静, 张泽灏, 等. 600 MW三塔合一间接空冷塔塔内流场特性研究[J]. 汽轮机技术, 2019, 61(1): 37–40 WANG Zhi, FU Jing, ZHANG Zehao, et al. Heat transfer characteristics and flow field analysis of 600 MW indirect air cooled tower[J]. Turbine Technology, 2019, 61(1): 37–40 [18] 卫慧敏, 杜小泽, 杨立军, 等. 大型间接空冷塔塔形优化[J]. 热力发电, 2017, 46(11): 50–56 WEI Huimin, DU Xiaoze, YANG Lijun, et al. Configuration optimization for a large-scale dry-cooling tower[J]. Thermal Power Generation, 2017, 46(11): 50–56 [19] 邹庆江, 张义江, 郭民臣. 采用蒸发式冷却器的间接空冷系统的热经济性分析[J]. 中国电力, 2018, 51(1): 164–170 ZOU Qingjiang, ZHANG Yijiang, GUO Minchen. Thermal economic analyses of a power unit using indirect dry cooling system with an evaporative cooler[J]. Electric Power, 2018, 51(1): 164–170 [20] Fluent Inc., FLUENT 6.3 User's Guide[M]. Lebanon, NH, USA, 2006.
|