中国电力 ›› 2024, Vol. 57 ›› Issue (8): 190-205.DOI: 10.11930/j.issn.1004-9649.202310056
邱敏1(), 周颖1(
), 赵伟博1(
), 王阳2(
), 陈宋宋1(
), 郭耀扬3(
), 赵波3(
)
收稿日期:
2023-10-23
接受日期:
2024-07-02
出版日期:
2024-08-28
发布日期:
2024-08-24
作者简介:
邱敏(1992—),男,博士,工程师,从事电力系统负荷预测分析研究,E-mail:qiumin1992@126.com基金资助:
Min QIU1(), Ying ZHOU1(
), Weibo ZHAO1(
), Yang WANG2(
), Songsong CHEN1(
), Yaoyang GUO3(
), Bo ZHAO3(
)
Received:
2023-10-23
Accepted:
2024-07-02
Online:
2024-08-28
Published:
2024-08-24
Supported by:
摘要:
电力负荷由于受到气温、经济、特殊事件等多种因素及多因素耦合影响,增长成因量化分析困难。同时,目前对于电力负荷研究多集中于预测方面,对负荷增长原因分析较少。通过研究电力负荷数据特征构建方法,提出一种电力负荷增长归因分析方法。首先,构建气象相关性指标、基于经济发展的自然负荷增长指标、基于电力电量修正的产业结构变化指标以及事件趋势一致性评价指标;在此基础上,分别提取气象负荷、自然经济负荷、业扩负荷、随机负荷,利用贡献率量化各因素对负荷增长的影响程度。最后,利用西北某2省的电力电量数据进行验证,结果显示所提方法能够很好地量化负荷增长的原因。
邱敏, 周颖, 赵伟博, 王阳, 陈宋宋, 郭耀扬, 赵波. 基于特征构建的区域电力负荷增长归因及量化分析方法[J]. 中国电力, 2024, 57(8): 190-205.
Min QIU, Ying ZHOU, Weibo ZHAO, Yang WANG, Songsong CHEN, Yaoyang GUO, Bo ZHAO. Attribution and Quantitative Analysis Method for Regional Power Load Growth Based on Feature Construction[J]. Electric Power, 2024, 57(8): 190-205.
月份 | 与最大用电负荷相关系数 | |||||||
最高温度 | 最低温度 | 平均温度 | 风速 | |||||
1 | –0.16 | 0.46 | 0.22 | –0.16 | ||||
2 | 0.42 | 0.65 | 0.56 | 0.38 | ||||
3 | –0.04 | –0.38 | –0.21 | –0.04 | ||||
4 | –0.19 | –0.19 | –0.22 | 0.15 | ||||
5 | 0.11 | 0.43 | 0.29 | –0.10 | ||||
6 | 0.58 | 0.15 | 0.50 | 0.18 | ||||
7 | 0.71 | 0.84 | 0.87 | 0.18 | ||||
8 | 0.96 | 0.96 | 0.98 | 0.42 | ||||
9 | 0.41 | 0.60 | 0.63 | 0.00 | ||||
10 | –0.19 | –0.50 | –0.44 | –0.44 | ||||
11 | –0.69 | –0.53 | –0.63 | 0.08 | ||||
12 | –0.13 | 0.25 | 0.08 | –0.17 |
表 1 2022年区域1气象因素与最大用电负荷相关性
Table 1 Correlation between meteorological factors and maximum electricity load in area 1 in 2022
月份 | 与最大用电负荷相关系数 | |||||||
最高温度 | 最低温度 | 平均温度 | 风速 | |||||
1 | –0.16 | 0.46 | 0.22 | –0.16 | ||||
2 | 0.42 | 0.65 | 0.56 | 0.38 | ||||
3 | –0.04 | –0.38 | –0.21 | –0.04 | ||||
4 | –0.19 | –0.19 | –0.22 | 0.15 | ||||
5 | 0.11 | 0.43 | 0.29 | –0.10 | ||||
6 | 0.58 | 0.15 | 0.50 | 0.18 | ||||
7 | 0.71 | 0.84 | 0.87 | 0.18 | ||||
8 | 0.96 | 0.96 | 0.98 | 0.42 | ||||
9 | 0.41 | 0.60 | 0.63 | 0.00 | ||||
10 | –0.19 | –0.50 | –0.44 | –0.44 | ||||
11 | –0.69 | –0.53 | –0.63 | 0.08 | ||||
12 | –0.13 | 0.25 | 0.08 | –0.17 |
月份 | 与最大用电负荷相关系数 | |||||||
最高温度 | 最低温度 | 平均温度 | 风速 | |||||
1 | 0.22 | 0.21 | 0.21 | 0.05 | ||||
2 | –0.03 | –0.22 | –0.13 | –0.21 | ||||
3 | –0.57 | –0.71 | –0.73 | –0.39 | ||||
4 | –0.12 | –0.71 | –0.73 | –0.39 | ||||
5 | 0.16 | 0.24 | 0.21 | 0.16 | ||||
6 | 0.79 | 0.82 | 0.85 | –0.16 | ||||
7 | 0.36 | 0.67 | 0.52 | 0.27 | ||||
8 | 0.45 | 0.55 | 0.54 | 0.34 | ||||
9 | 0.36 | 0.51 | 0.45 | 0.25 | ||||
10 | –0.87 | –0.55 | –0.81 | 0.04 | ||||
11 | –0.90 | –0.85 | –0.88 | 0.34 | ||||
12 | –0.21 | –0.28 | –0.29 | 0.03 |
表 2 2022年区域2气象因素与最大用电负荷相关性
Table 2 Correlation between meteorological factors and maximum electricity load in area 2 in 2022
月份 | 与最大用电负荷相关系数 | |||||||
最高温度 | 最低温度 | 平均温度 | 风速 | |||||
1 | 0.22 | 0.21 | 0.21 | 0.05 | ||||
2 | –0.03 | –0.22 | –0.13 | –0.21 | ||||
3 | –0.57 | –0.71 | –0.73 | –0.39 | ||||
4 | –0.12 | –0.71 | –0.73 | –0.39 | ||||
5 | 0.16 | 0.24 | 0.21 | 0.16 | ||||
6 | 0.79 | 0.82 | 0.85 | –0.16 | ||||
7 | 0.36 | 0.67 | 0.52 | 0.27 | ||||
8 | 0.45 | 0.55 | 0.54 | 0.34 | ||||
9 | 0.36 | 0.51 | 0.45 | 0.25 | ||||
10 | –0.87 | –0.55 | –0.81 | 0.04 | ||||
11 | –0.90 | –0.85 | –0.88 | 0.34 | ||||
12 | –0.21 | –0.28 | –0.29 | 0.03 |
区 域 | W1/ 亿元 | 亿元 | W2/ 亿元 | 亿元 | W3/ 亿元 | 亿元 | y/ 元 | y′/ 元 | ||||||||
1 | 473.80 | 239.06 | ||||||||||||||
2 | 422.88 | 131.86 |
表 3 2022年区域1与区域2第1、2季度三次产业的产业增加值与人均消费支出情况
Table 3 Industrial added value and per capita consumption expenditure of the third industry in the first and second quarters of area 1 and area 2 in 2022
区 域 | W1/ 亿元 | 亿元 | W2/ 亿元 | 亿元 | W3/ 亿元 | 亿元 | y/ 元 | y′/ 元 | ||||||||
1 | 473.80 | 239.06 | ||||||||||||||
2 | 422.88 | 131.86 |
区域 | g值 | |||||||||||||
1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | ||||||||
1 | 0.05 | 0.04 | 0.03 | 0.15 | –0.19 | –0.15 | 0.34 | |||||||
2 | 0.31 | 0.11 | 0.33 | 0.15 | –0.08 | 0.31 | –0.12 |
表 4 休息日与日负荷增长g值
Table 4 The correlation value g between holidays and daily load growth
区域 | g值 | |||||||||||||
1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | ||||||||
1 | 0.05 | 0.04 | 0.03 | 0.15 | –0.19 | –0.15 | 0.34 | |||||||
2 | 0.31 | 0.11 | 0.33 | 0.15 | –0.08 | 0.31 | –0.12 |
负荷变量 | 增长量/万kW | 贡献率/% | ||
总负荷 | 100.49 | |||
气象负荷 | 820.52 | 79.79 | ||
自然经济负荷 | 139.91 | 13.61 | ||
业扩增长 | 22.59 | 2.20 | ||
休息日 | 50.34 | 4.90 |
表 5 基于贡献率的区域1负荷增长量化归因情况
Table 5 Quantitative attribution of load growth in area 1 based on contribution rate
负荷变量 | 增长量/万kW | 贡献率/% | ||
总负荷 | 100.49 | |||
气象负荷 | 820.52 | 79.79 | ||
自然经济负荷 | 139.91 | 13.61 | ||
业扩增长 | 22.59 | 2.20 | ||
休息日 | 50.34 | 4.90 |
负荷变量 | 增长量/万kW | 贡献率/% | ||
总负荷 | 610.33 | 100.95 | ||
气象负荷 | 504.76 | 82.70 | ||
自然经济负荷 | 103.59 | 16.97 | ||
业扩增长 | 7.77 | 1.27 | ||
休息日 | 0.00 | 0.00 |
表 6 基于贡献率的区域2负荷增长量化归因情况
Table 6 Quantitative attribution of load growth in area 2 based on contribution rate
负荷变量 | 增长量/万kW | 贡献率/% | ||
总负荷 | 610.33 | 100.95 | ||
气象负荷 | 504.76 | 82.70 | ||
自然经济负荷 | 103.59 | 16.97 | ||
业扩增长 | 7.77 | 1.27 | ||
休息日 | 0.00 | 0.00 |
月份 | 与最大用电负荷相关系数 | |||||||
最高温度 | 最低温度 | 平均温度 | 风速 | |||||
1 | –0.612 | –0.264 | –0.618 | –0.158 | ||||
2 | –0.391 | 0.064 | –0.250 | 0.170 | ||||
3 | –0.705 | –0.721 | –0.795 | 0.035 | ||||
4 | –0.470 | –0.350 | –0.465 | 0.213 | ||||
5 | 0.254 | 0.160 | 0.260 | –0.317 | ||||
6 | 0.699 | 0.441 | 0.737 | 0.410 | ||||
7 | 0.836 | 0.650 | 0.926 | 0.248 | ||||
8 | 0.788 | 0.634 | 0.720 | –0.556 | ||||
9 | 0.726 | 0.569 | 0.790 | –0.077 | ||||
10 | –0.010 | –0.471 | –0.393 | 0.188 | ||||
11 | –0.922 | –0.880 | –0.937 | –0.293 | ||||
12 | –0.848 | –0.426 | –0.656 | 0.012 |
表 7 2020年区域1气象因素与最大用电负荷相关性
Table 7 Correlation between meteorological factors and maximum electricity load in area 1 in 2020
月份 | 与最大用电负荷相关系数 | |||||||
最高温度 | 最低温度 | 平均温度 | 风速 | |||||
1 | –0.612 | –0.264 | –0.618 | –0.158 | ||||
2 | –0.391 | 0.064 | –0.250 | 0.170 | ||||
3 | –0.705 | –0.721 | –0.795 | 0.035 | ||||
4 | –0.470 | –0.350 | –0.465 | 0.213 | ||||
5 | 0.254 | 0.160 | 0.260 | –0.317 | ||||
6 | 0.699 | 0.441 | 0.737 | 0.410 | ||||
7 | 0.836 | 0.650 | 0.926 | 0.248 | ||||
8 | 0.788 | 0.634 | 0.720 | –0.556 | ||||
9 | 0.726 | 0.569 | 0.790 | –0.077 | ||||
10 | –0.010 | –0.471 | –0.393 | 0.188 | ||||
11 | –0.922 | –0.880 | –0.937 | –0.293 | ||||
12 | –0.848 | –0.426 | –0.656 | 0.012 |
月份 | 与最大用电负荷相关系数 | |||||||
最高温度 | 最低温度 | 平均温度 | 风速 | |||||
1 | –0.514 | –0.299 | –0.452 | 0.225 | ||||
2 | –0.798 | –0.001 | –0.575 | –0.244 | ||||
3 | –0.277 | –0.306 | –0.350 | 0.524 | ||||
4 | –0.124 | 0.033 | –0.073 | 0.179 | ||||
5 | 0.363 | 0.505 | 0.486 | –0.145 | ||||
6 | 0.656 | 0.764 | 0.785 | 0.443 | ||||
7 | 0.689 | 0.646 | 0.864 | 0.092 | ||||
8 | 0.825 | 0.815 | 0.936 | 0.361 | ||||
9 | 0.819 | 0.870 | 0.911 | 0.625 | ||||
10 | 0.233 | –0.408 | –0.148 | –0.051 | ||||
11 | –0.730 | –0.738 | –0.837 | 0.048 | ||||
12 | –0.830 | –0.830 | –0.892 | 0.082 |
表 8 2023年区域1气象因素与最大用电负荷相关性
Table 8 Correlation between meteorological factors and maximum electricity load in area 1 in 2023
月份 | 与最大用电负荷相关系数 | |||||||
最高温度 | 最低温度 | 平均温度 | 风速 | |||||
1 | –0.514 | –0.299 | –0.452 | 0.225 | ||||
2 | –0.798 | –0.001 | –0.575 | –0.244 | ||||
3 | –0.277 | –0.306 | –0.350 | 0.524 | ||||
4 | –0.124 | 0.033 | –0.073 | 0.179 | ||||
5 | 0.363 | 0.505 | 0.486 | –0.145 | ||||
6 | 0.656 | 0.764 | 0.785 | 0.443 | ||||
7 | 0.689 | 0.646 | 0.864 | 0.092 | ||||
8 | 0.825 | 0.815 | 0.936 | 0.361 | ||||
9 | 0.819 | 0.870 | 0.911 | 0.625 | ||||
10 | 0.233 | –0.408 | –0.148 | –0.051 | ||||
11 | –0.730 | –0.738 | –0.837 | 0.048 | ||||
12 | –0.830 | –0.830 | –0.892 | 0.082 |
y/元 | y′/元 | |||||||||||||
508.24 | 398.62 |
表 9 2020年与2023年区域1第2季度三次产业的产业增加值与人均消费支出情况
Table 9 Industrial added value and per capita consumption expenditure of the third industries in the second quarters of area 1 in 2020 and 2023
y/元 | y′/元 | |||||||||||||
508.24 | 398.62 |
年份 | 季度 | g值 | 年份 | 季度 | g值 | |||||
2020 | 3 | 0.213 | 2022 | 1 | –0.048 | |||||
4 | 0.042 | 2 | 0.186 | |||||||
2021 | 1 | –0.173 | 3 | 0.013 | ||||||
2 | 0.107 | 4 | 0.123 | |||||||
3 | 0.062 | 2023 | 1 | 0.164 | ||||||
4 | –0.032 | 2 | 0.327 |
表 10 2020年第3季度至2023年第2季度区域1休息日与日负荷增长g值
Table 10 The correlation value g between holidays and daily load growth from the second quarter of 2020 to the second quarter of 2023
年份 | 季度 | g值 | 年份 | 季度 | g值 | |||||
2020 | 3 | 0.213 | 2022 | 1 | –0.048 | |||||
4 | 0.042 | 2 | 0.186 | |||||||
2021 | 1 | –0.173 | 3 | 0.013 | ||||||
2 | 0.107 | 4 | 0.123 | |||||||
3 | 0.062 | 2023 | 1 | 0.164 | ||||||
4 | –0.032 | 2 | 0.327 |
负荷变量 | 增长量/万kW | 贡献率/% | ||
总负荷 | 98.60 | |||
气象负荷 | 69.67 | |||
自然经济负荷 | 417.03 | 28.93 | ||
业扩增长 | 0.00 | 0.00 | ||
休息日 | 0.00 | 0.00 |
表 11 2020年7月至2023年7月区域1负荷变化量化归因
Table 11 Quantitative attribution of load changes in area 1 from July 2020 to July 2023
负荷变量 | 增长量/万kW | 贡献率/% | ||
总负荷 | 98.60 | |||
气象负荷 | 69.67 | |||
自然经济负荷 | 417.03 | 28.93 | ||
业扩增长 | 0.00 | 0.00 | ||
休息日 | 0.00 | 0.00 |
1 | 周颖, 白雪峰, 王阳, 等. 面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判[J]. 中国电力, 2024, 57 (1): 9- 17. |
ZHOU Ying, BAI Xuefeng, WANG Yang, et al. Analysis and evolution trend of temperature-sensitive loads for virtual power plant operation[J]. Electric Power, 2024, 57 (1): 9- 17. | |
2 | 邵必林, 纪丹阳. 基于VMD-SE的电力负荷分量的多特征短期预测[J]. 中国电力, 2024, 57 (4): 162- 170. |
SHAO Bilin, JI Danyang. Multi-feature short-term prediction of power load components based on VMD-SE[J]. Electric Power, 2024, 57 (4): 162- 170. | |
3 |
张武军, 程远林, 周捷, 等. 基于特性分析的改进BP神经网络短期电力预测方法[J]. 湖南电力, 2020, 40 (3): 17- 22.
DOI |
ZHANG Wujun, CHENG Yuanlin, ZHOU Jie, et al. Short term power forecasting method of improved BP neural network based on characteristic analysis[J]. Hunan Electric Power, 2020, 40 (3): 17- 22.
DOI |
|
4 | 刘雨薇. 基于VMD和改进LSTM的短期电力负荷预测研究[D]. 武汉: 湖北工业大学, 2020. |
LIU Yuwei. Research on short-term power load forecasting based on VMD and improved LSTM[D]. Wuhan: Hubei University of Technology, 2020. | |
5 | 李涛. 面向电力市场用户侧的中长期电力负荷预测研究[D]. 重庆: 重庆理工大学, 2022. |
LI Tao. Research on medium and long-term power load forecasting for user side of power market[D]. Chongqing: Chongqing University of Technology, 2022. | |
6 | 郭艳飞, 程林, 李洪涛, 等. 基于支持向量机和互联网信息修正的空间负荷预测方法[J]. 中国电力, 2019, 52 (4): 80- 88. |
GUO Yanfei, CHENG Lin, LI Hongtao, et al. Spatial load forecasting method based on support vector machine and internet information correction[J]. Electric Power, 2019, 52 (4): 80- 88. | |
7 |
付桂琴, 尤凤春, 曹欣, 等. 积温效应在电力日峰谷负荷中的应用及检验[J]. 应用气象学报, 2015, 26 (4): 492- 499.
DOI |
FU Guiqin, YOU Fengchun, CAO Xin, et al. Application and verification of accumulated temperature effects on daily peak load and daily valley load of power[J]. Journal of Applied Meteorological Science, 2015, 26 (4): 492- 499.
DOI |
|
8 |
李滨, 陆明珍. 考虑实时气象耦合作用的地区电网短期负荷预测建模[J]. 电力系统自动化, 2020, 44 (17): 60- 68.
DOI |
LI Bin, LU Mingzhen. Short-term load forecasting modeling of regional power grid considering real-time meteorological coupling effect[J]. Automation of Electric Power Systems, 2020, 44 (17): 60- 68.
DOI |
|
9 | 高崇, 周鹏, 罗强, 等. 考虑实际负荷增长模式下的配电网供电能力评估方法[J]. 南方电网技术, 2023, 17 (7): 115- 124. |
GAO Chong, ZHOU Peng, LUO Qiang, et al. Evaluation method of load supply capability of distribution network considering actual load growth mode[J]. Southern Power System Technology, 2023, 17 (7): 115- 124. | |
10 | 刘文娇, 沈春明, 郭军红, 等. 夏季气象电力负荷相关性分析模型修正方法: 以北京为例[J]. 电力科学与技术学报, 2024, 39 (2): 112- 123. |
LIU Wenjiao, SHEN Chunming, GUO Junhong, et al. Correction method of correlation analysis model between meteorology and electric power load in summer: a case study of Beijing[J]. Journal of Electric Power Science and Technology, 2024, 39 (2): 112- 123. | |
11 | 郭鸿业, 陈启鑫, 夏清, 等. 考虑经济因素时滞效应的月度负荷预测方法[J]. 电网技术, 2016, 40 (2): 514- 520. |
GUO Hongye, CHEN Qixin, XIA Qing, et al. Study on mid-term electricity load forecast considering time lag effects of economic factors[J]. Power System Technology, 2016, 40 (2): 514- 520. | |
12 |
汪付华, 周后福, 戴金源, 等. 基于经济气象因素的月用电负荷预测模型研究[J]. 电力需求侧管理, 2020, 22 (5): 78- 82.
DOI |
WANG Fuhua, ZHOU Houfu, DAI Jinyuan, et al. Study on the forecasting model of monthly power load based on economic and meteorological factors[J]. Power Demand Side Management, 2020, 22 (5): 78- 82.
DOI |
|
13 | 侯劭元. 城市用户负荷特性分析及应用[D]. 广州: 华南理工大学, 2015. |
HOU Shaoyuan. Analysis and application of urban customer load characteristics[D]. Guangzhou: South China University of Technology, 2015. | |
14 | 程义明. 地区电网负荷特性分析及其应用研究[D]. 长沙: 湖南大学, 2012. |
CHENG Yiming. Research of load characteristics analysis and its application for district power grid[D]. Changsha: Hunan University, 2012. | |
15 | 杨广森. 基于季节调整的业扩报装分析预测研究[D]. 济南: 山东大学, 2016. |
YANG Guangsen. Analysis and forecast studies of business expanding based on seasonal adjustment[D]. Jinan: Shandong University, 2016. | |
16 | 范杏蕊, 李元诚. 基于改进Autoformer模型的短期电力负荷预测[J]. 电力自动化设备, 2024, 44 (4): 171- 177. |
FAN Xingrui, LI Yuancheng. Short-term power load forecasting based on improved Autoformer model[J]. Electric Power Automation Equipment, 2024, 44 (4): 171- 177. | |
17 |
谢家安, 莫颖生, 王玉荣. COVID-19重大疫情下的电网负荷趋势评估新方法[J]. 广东电力, 2020, 33 (7): 42- 48.
DOI |
XIE Jia’an, MO Yingsheng, WANG Yurong. A new method for evaluating power load trends in major outbreaks of COVID-19[J]. Guangdong Electric Power, 2020, 33 (7): 42- 48.
DOI |
|
18 | 程志友, 汪德胜. 基于机器学习与疫情关联特征的短期负荷预测[J]. 电力系统保护与控制, 2022, 50 (23): 1- 8. |
CHENG Zhiyou, WANG Desheng. Short-term load forecasting based on machine learning and epidemic association features[J]. Power System Protection and Control, 2022, 50 (23): 1- 8. | |
19 | 史文博. 地区电网负荷特性分析及短期负荷预测研究[D]. 广州: 华南理工大学, 2015. |
SHI Wenbo. Analysis of power load characteristic and study on short-term load forecasting in regional power system[D]. Guangzhou: South China University of Technology, 2015. | |
20 | 张桢豪. 新冠肺炎疫情下电力系统短期负荷预测模型及方法研究[D]. 南宁: 广西大学, 2022. |
ZHANG Zhenhao. Researches on power system short-term load forecasting model and method in COVID-19[D]. Nanning: Guangxi University, 2022. | |
21 | 徐常, 贺墨琳, 杨成, 等. 贵州电网负荷特性影响因素分析[J]. 南方能源建设, 2020, 7 (S1): 36- 41. |
XU Chang, HE Molin, YANG Cheng, et al. Analysis of influence factors of load characteristics in Guizhou[J]. Southern Energy Construction, 2020, 7 (S1): 36- 41. | |
22 |
郇嘉嘉, 左郑敏, 程鑫, 等. 省级电网负荷特性分析方法研究[J]. 机电工程技术, 2018, 47 (2): 80- 85.
DOI |
HUAN Jiajia, ZUO Zhengmin, CHENG Xin, et al. A method of provincial power grids load characteristics analyzing[J]. Mechanical & Electrical Engineering Technology, 2018, 47 (2): 80- 85.
DOI |
|
23 | 雷绍兰, 古亮, 杨佳, 等. 重庆地区电力负荷特性及其影响因素分析[J]. 中国电力, 2014, 47 (12): 61- 65, 71. |
LEI Shaolan, GU Liang, YANG Jia, et al. Analysis of electric power load characteristics and its influencing factors in Chongqing Region[J]. Electric Power, 2014, 47 (12): 61- 65, 71. | |
24 | 王林信, 江元, 罗世刚, 等. 基于电力大数据的企业复工复产模型研究及应用[J]. 电力大数据, 2020, 23 (12): 65- 71. |
WANG Linxin, JIANG Yuan, LUO Shigang, et al. Research and application of enterprise resumption model based on power big data[J]. Power Systems and Big Data, 2020, 23 (12): 65- 71. | |
25 |
SILVA L. A feature engineering approach to wind power forecasting GEFCom 2012[J]. International Journal of Forecasting, 2014, 30 (2): 395- 401.
DOI |
26 |
李琛, 郭文利, 吴进, 等. 基于BP神经网络的北京夏季日最大电力负荷预测方法[J]. 气候与环境研究, 2019, 24 (1): 135- 142.
DOI |
LI Chen, GUO Wenli, WU Jin, et al. A method for prediction of daily maximum electric loads in the summer in Beijing based on the BP neural network[J]. Climatic and Environmental Research, 2019, 24 (1): 135- 142.
DOI |
|
27 | 朱林, 张健, 陈达, 等. 面向暂态电压稳定评估的卷积神经网络输入特征构建方法[J]. 电力系统自动化, 2022, 46 (1): 85- 93. |
ZHU Lin, ZHANG Jian, CHEN Da, et al. Construction method for input features of convolutional neural network for transient voltage stability assessment[J]. Automation of Electric Power Systems, 2022, 46 (1): 85- 93. | |
28 | 李艳, 蔡芗宁, 徐卫立, 等. 典型天气形势与溪洛渡电站发电供求关系的影响[J]. 气象科技, 2022, 50 (3): 420- 427. |
LI Yan, CAI Xiangning, XU Weili, et al. Impact of typical weather circulation situation on relationship between power supply and demand of xiluodu hydropower station[J]. Meteorological Science and Technology, 2022, 50 (3): 420- 427. | |
29 | 吴荣福. 特殊天气下的福建电网短期负荷预测研究[D]. 福州: 福州大学, 2016. |
WU Rongfu. The research on short-term load forecasting in Fujian power grid under special weather[D]. Fuzhou: Fuzhou University, 2016. | |
30 | 土)锡南·厄兹代米尔, 迪夫娅·苏萨拉. 特征工程入门与实践[M]. 庄嘉盛, 译. 北京: 人民邮电出版社, 2019. |
31 |
金林, 李研. 几种相关系数辨析及其在R语言中的实现[J]. 统计与信息论坛, 2019, 34 (4): 3- 11.
DOI |
JIN Lin, LI Yan. Discrimination of several correlation coefficients and their implementation in R software[J]. Statistics & Information Forum, 2019, 34 (4): 3- 11.
DOI |
|
32 |
SCHOUHAMER IMMINK K A, WEBER J H. Hybrid minimum Pearson and euclidean distance detection[J]. IEEE Transactions on Communications, 2015, 63 (9): 3290- 3298.
DOI |
33 | 干春晖, 郑若谷, 余典范. 中国产业结构变迁对经济增长和波动的影响[J]. 经济研究, 2011, 46 (5): 4- 16, 31. |
GAN Chunhui, ZHENG Ruogu, YU Dianfan. An empirical study on the effects of industrial structure on economic growth and fluctuations in China[J]. Economic Research Journal, 2011, 46 (5): 4- 16, 31. | |
34 |
查金平. 承接产业转移示范区设立的产业结构转型效应研究: 基于皖江城市带的准自然实验[J]. 科技和产业, 2022, 22 (12): 276- 287.
DOI |
ZHA Jinping. Study on the transformation effect of industrial structure set up by undertaking industrial transfer demonstration area: a quasi-natural experiment in Wanjiang city belt[J]. Science Technology and Industry, 2022, 22 (12): 276- 287.
DOI |
|
35 | 柯军. 产业结构升级与经济增长的关系[J]. 统计与决策, 2008, 24 (11): 83- 84. |
36 |
韩如意, 李炜. 湖南省产业结构调整的效益与对策研究[J]. 中国集体经济, 2011, (34): 53- 54.
DOI |
37 | 冬雷, 廖晓钟, 王丽婕. 大型风电场发电功率建模与预测[M]. 北京: 科学出版社, 2014. |
38 |
王涛, 彭云华, 吴小亚. 基于相关因素修正的短期电力负荷回归预测模型[J]. 电气自动化, 2013, 35 (1): 52- 54.
DOI |
WANG Tao, PENG Yunhua, WU Xiaoya. The short electrical load regression farecasting model based on the dependent factors modifying[J]. Electrical Automation, 2013, 35 (1): 52- 54.
DOI |
|
39 | DING N, BÉSANGER Y, WURTZ F, et al. Time series method for short-term load forecasting using smart metering in distribution systems[C]//2011 IEEE Trondheim PowerTech. Trondheim, Norway. IEEE, 2011: 1–6. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||