中国电力 ›› 2024, Vol. 57 ›› Issue (8): 190-205.DOI: 10.11930/j.issn.1004-9649.202310056

• 电网 • 上一篇    下一篇

基于特征构建的区域电力负荷增长归因及量化分析方法

邱敏1(), 周颖1(), 赵伟博1(), 王阳2(), 陈宋宋1(), 郭耀扬3(), 赵波3()   

  1. 1. 中国电力科学研究院有限公司,北京 100192
    2. 国家电网有限公司,北京 100031
    3. 北京信息科技大学 自动化学院,北京 100192
  • 收稿日期:2023-10-23 接受日期:2024-07-02 出版日期:2024-08-28 发布日期:2024-08-24
  • 作者简介:邱敏(1992—),男,博士,工程师,从事电力系统负荷预测分析研究,E-mail:qiumin1992@126.com
    赵波(1977—),男,通信作者,博士,研究员,从事新能源与储能、智能配用电研究,E-mail:13910886512@126.com
  • 基金资助:
    国家电网有限公司科技项目(5108-202218280A-2-379-XG)。

Attribution and Quantitative Analysis Method for Regional Power Load Growth Based on Feature Construction

Min QIU1(), Ying ZHOU1(), Weibo ZHAO1(), Yang WANG2(), Songsong CHEN1(), Yaoyang GUO3(), Bo ZHAO3()   

  1. 1. China Electric Power Research Institute, Beijing 100192, China
    2. State Grid Corporation of China, Beijing 100031, China
    3. School of Automation, Beijing Information Science and Technology University, Beijing 100192, China
  • Received:2023-10-23 Accepted:2024-07-02 Online:2024-08-28 Published:2024-08-24
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (No.5108-202218280A-2-379-XG).

摘要:

电力负荷由于受到气温、经济、特殊事件等多种因素及多因素耦合影响,增长成因量化分析困难。同时,目前对于电力负荷研究多集中于预测方面,对负荷增长原因分析较少。通过研究电力负荷数据特征构建方法,提出一种电力负荷增长归因分析方法。首先,构建气象相关性指标、基于经济发展的自然负荷增长指标、基于电力电量修正的产业结构变化指标以及事件趋势一致性评价指标;在此基础上,分别提取气象负荷、自然经济负荷、业扩负荷、随机负荷,利用贡献率量化各因素对负荷增长的影响程度。最后,利用西北某2省的电力电量数据进行验证,结果显示所提方法能够很好地量化负荷增长的原因。

关键词: 负荷增长, 特征构建, 自然经济负荷, 产业结构变化, 特殊事件

Abstract:

The power load is affected by various factors such as temperature, economy, special events, and multi-factor coupling, which makes the quantitative analysis of the causes of the power load growth difficult. At the same time, current load analysis is mostly focused on prediction, and it is uncommon to analyze the causes of load growth.Therefore, based on a study on the construction method of power load data characteristics, a power load growth attribution analysis method is proposed. Firstly, the meteorological correlation indicators, the economic development-based natural load growth indicators, the electrical quantity correction-based industrial structure change indicators, and the event trend consistency evaluation indicators are constructed. And then, the meteorological load, natural economic load, industrial expansion load and random load are respectively extracted, and the contribution rate is used to quantify the influence degree of each factor on the load growth. Finally, the power consumption data of two northwestern provinces are used to verify the proposed method, which indicates that the proposed method is effectively quantify the causes of load growth.

Key words: load growth, feature construction, natural economic load, industrial structure changes, special events